Правильно ли я понимаю, что самый колоссальный эффект как раз для 12-15? Ибо имеется не менее 11 одиночных искомых простых в паттернах.
Как я понимаю, для всех паттернов, где много проверок на простоту.
Другое дело, что искусственное увеличение таких проверок ведет к резкому уменьшению вероятности успеха.
Вроде, мы все это уже обсуждали.
В паттернах для 48-20 не менее 3 искомых одиночных простых? Можно ли посмотреть на эти данные по другому количеству делителей и другим длинам цепочек? Неплохо бы свести их в табличку.
Не совсем понял, что именно свести в таблицу.
При поиске двадцатки я экспериментировал с разными паттернами. И эмпирически пришел к той системе (с тремя простыми), для которой и была найдена двадцатка. (Возможно, если бы основной поиск велся с помощью других паттернов, двадцатка бы нашлась еще раньше
)
Но 3 проверки на простоту оптимально для поиска без ускорителей.
Поэтому создавая паттерны для цепочки длины 21, я сделал варианты и на 3, и на 4.
Дмитрий пришел к выводу, что и с его ускорителями 3 проверки лучше 4-х. Но я не исключаю, что это не "окончательный диагноз".
-- 13 июл 2022, 11:33 --Повторю вопросы, которые в бурном потоке сообщений остались без ответа.
Пятнашку по 96 делителей кто-нибудь ищет?
Здесь отсутствие ответа, по-видимому, означает, что никто.
И еще раз пытаюсь понять, что у нас не сегодняшний момент с оценками сверху для
, сравнимых с 12 по модулю 24. Пытался выудить ее из диалога Дениса и Евгения, но заблудился
Верно ли, что
для 108, 132, 156? Или там еще не было проверки частных случаев?
Какова текущая оценка для 252? Полагаю, 23 явно завышена. 21?