В современной математике множества, являющиеся элементами самих себя, "запрещены" (вводится специальная аксиома, говорящая, что они не существуют). Запрещены, в частности, потому, что чреваты парадоксами.
Цитата:
Логическая ошибка парадокса объясняется неверным выбором логических посылок (Википедия)
то есть аксиом, которые противоречат друг другу. Мне кажется, что если аксиомы не противоречат друг другу, противоречий в системе быть не может.
Я думаю, что если как следует разобраться, то никакой парадокс не выдержит критики, потому что любой парадокс основан на противоречивых посылках.
Очевидно, имевшая ранее место аксиома, допускающая множества, которые являются элементами самих себя, находилась в противоречии с остальными аксиомами теории (что, впрочем, не исключает того, что она может работать в каком-нибудь другом наборе аксиом)
Когда солдат бреет сам себя, он распадается на две сущности: на бреющую и бреемую, -- не надо их смешивать, и все встанет на место.
А что может запретить нам их смешивать? Вы говорите, что "распадается", я говорю, что "не распадается". Как спорить будете?
Запретить может введение соответствующей аксиомы -- которая и была введена.
Я имею в виду, что "является своим собственным элементом" это то же самое, что "сам себя бреет".
Вообще, я сильно сомневаюсь, что в логике работает принцип "сам себя", во всяком случае, мне гораздо понятнее наличие двух объектов: активного и пассивного, -- чем совмещение этих двух начал в одном объекте.
То, что в жизни кто-то сам себя бреет, это обманчивое впечатление, на самом деле он бреет свою щеку, к которой в этот момент относится как к другому объекту.
Когда солдат бреет сам себя, он распадается на две сущности: на бреющую и бреемую, -- не надо их смешивать, и все встанет на место.
Дык, а что запрещает элементу множества обладать двумя свойствами одновременно?
Бывает, что свойства противоречат друг другу, и тогда вводится аксиома, запрещающая одно из них.