2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 08:58 
Аватара пользователя
Даже конкретизирую вопрос.

Пусть у меня определён оператор $A:\mathscr{D}(\Omega_1)\to\mathscr{D}^\prime(\Omega_2)$.
И пусть $\phi\in\mathscr{D}^\prime(\Omega_1)$.
Я хотел бы доопределить $A\phi$ как предел в $\mathscr{D}^\prime(\Omega_2)$ последовательности $\{A\phi_k\}$, где $\{\phi_k\}\subset\mathscr{D}(\Omega_1)$ - произвольная последовательность, такая что $\{\phi_k\}\overset{\mathscr{D}^\prime(\Omega_1)}\to\phi$,
если этот предел существует и не зависит от выбора последовательности $\phi_k$.

Вопрос: насколько широк класс тех $A$ и тех $\phi$, для которых это получится сделать?
Интересуют в первую очередь операторы $A$, соответствующие фундаментальным решениям типичных уравнений, и обобщённые функции $\phi$ тоже с сингулярностями не сложнее простого или двойного слоя.

Интуитивно кажется, что раз уж на $\mathscr{D}^\prime$ даже дифференциальные операторы непрерывны, то с интегральными не должно быть особых проблем. Столь же ясно, конечно, и то, что даже если взять $\Omega_1=\Omega_2=\mathbb{R}^n$, $K_A\equiv 1$, $\phi\equiv 1$ безо всяких сингулярностей, то ничего не получится с пределом. Поэтому я и надеюсь продолжить оператор $A$ не на все $\phi$, а хотя бы на некоторые.
Существует ли какая-нибудь теория на этот счёт?
Или это делается как-то по-другому?

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 14:16 
Аватара пользователя
Скорее всего, так как я предложил в предыдущем сообщении, сделать ничего не получится.
Но ведь зачем это я всё спрашиваю?
Red_Herring в сообщении #1390578 писал(а):
С моей точки зрения, огромное преимущество в единообразии. Так есть интегральные операторы, сингулярные интегральные операторы дифференциальные, их композиции да суперпозиции, а с помощью обобщенных функций можно сказать "интегральный оператор с ядром Шварца .... ". Как иначе объяснить, что такое фундаментальное решение? Для каждой задачи объяснение придется придумывать отдельно, если без обобщенных функций, даже если фундаментальное решение является обычной функцией. А вот для 3D волнового уравнения (и тем паче в более высоких размерностях, оно обычной функцией и не будет).
Чтобы было действительно единообразие, нужно уметь единообразно определять все перечисленные интегральные операторы с ядром Шварца, и не только на $\mathscr{D}$, а не так чтобы для каждого оператора придумывать своё определение. Потому что иначе, может, для всех задач и можно единообразно определить фундаментальное решение (ядро интегрального оператора), но как это фундаментальное решение применять (как применять этот интегральный оператор к вообще говоря сингулярным правым частям) - по-прежнему непонятно. Можно ли здесь навести какое-то единообразие?

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 14:29 
Аватара пользователя
Mikhail_K в сообщении #1394484 писал(а):
Интуитивно кажется, что раз уж на $\mathscr{D}^\prime$ даже дифференциальные операторы непрерывны, то с интегральными не должно быть особых проблем.
Видите ли, при таком подходе все операторы "интегральные".

Есть критерии когда такой оператор как мы определили, действует из $\mathscr{D}$ в $\mathscr{Е}$ и/или из $\mathscr{E}'$ в $\mathscr{D}'$. Все остальное ... Я понимаю, Вы думаете, что решение всегда более регулярно чем правая часть. Но это далеко не так!

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 15:01 
Аватара пользователя
Red_Herring в сообщении #1394553 писал(а):
Есть критерии когда такой оператор как мы определили, действует из $\mathscr{D}$ в $\mathscr{Е}$ и/или из $\mathscr{E}'$ в $\mathscr{D}'$.
Я правильно понял: из $\mathscr{E}^\prime$ в $\mathscr{D}^\prime$ (хотя изначально был из $\mathscr{D}$ в $\mathscr{D}^\prime$)?
Если так, то хотел бы посмотреть. Где это можно увидеть?
Red_Herring в сообщении #1394553 писал(а):
Я понимаю, Вы думаете
Я ничего не думаю.
Вы сказали, что обобщённые функции позволяют единообразно определить фундаментальное решение для любых УЧП, в частности для трёхмерного волнового уравнения, а без обобщённых функций этого не получается.
Я смотрю на трёхмерное волновое уравнение и вижу, что его фундаментальное решение сингулярное и порождает соответствующий интегральный оператор с ядром Шварца.
Но затем Вы мне говорите, что такой оператор можно применять только к правой части из $\mathscr{D}$. Какой толк от фундаментального решения, если я не могу его единообразно применить к правой части не из $\mathscr{D}$? Ведь именно для этого фундаментальное решение и нужно, в реальных задачах правая часть не принадлежит $\mathscr{D}$, а содержит $\delta$ или $\delta^\prime$. Если это приходится для каждой задачи придумывать отдельно, как фундаментальное решение применять к правым частям не из $\mathscr{D}$, то никакого единообразия я здесь не вижу.

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 15:26 
Аватара пользователя
Mikhail_K в сообщении #1394559 писал(а):
Но затем Вы мне говорите, что такой оператор можно применять только к правой части из
. Не надо передергивать. Я сказал, что общий оператор с ядром Шварца можно применять только к регулярным функциям, получая обобщенные. Например оператор с ядром Шварца $\delta(x)\delta(y)$.
Но у волнового оператора ядро Шварца имеет волновой фронт (подмножество в $T^*(\Omega_1\times \Omega_2)$ не содержащий точек вида $(x,\xi, y,0)$ и $(x,0,y,\eta)$ и потому оператор действует из гладких в гладкие и из обобщенных в обобщенные.

Но если учесть, что существуют уравнения, которые не имеют обобщенных решений даже при некоторых гладких правых частях (например, знаменитый пример Леви), то даже оператор из гладких в обобщенные не так плох.

Mikhail_K в сообщении #1394559 писал(а):
Ведь именно для этого фундаментальное решение и нужно, в реальных задачах правая часть не принадлежит $\mathscr{D}$, а содержит $\delta$ или $\delta^\prime$
. Мне кажется что Вы слишком смело рассуждаете, что нужно и что ненужно, что считать реальной задачей, а что нет.
Mikhail_K в сообщении #1394559 писал(а):
то никакого единообразия я здесь не вижу.
Ну что я могу сказать. Не видите так не видите

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 15:35 
Аватара пользователя
Red_Herring в сообщении #1394553 писал(а):
Я понимаю, Вы думаете, что решение всегда более регулярно чем правая часть. Но это далеко не так!

Верно ли, что оно не менее регулярно? Если не так, то верно ли, что оно менее регулярно в некоторой контролируемой степени (например, на фиксированный конечный порядок)?

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 15:49 
Аватара пользователя

(Оффтоп)

Red_Herring в сообщении #1394566 писал(а):
Не надо передергивать.
Red_Herring в сообщении #1394566 писал(а):
Мне кажется что Вы слишком смело рассуждаете, что нужно и что ненужно, что считать реальной задачей, а что нет.
Red_Herring в сообщении #1394566 писал(а):
Ну что я могу сказать. Не видите так не видите
Стоп. Ни в коем случае не хотел Вас задеть, и прошу прощения. Я очень благодарен Вам за ответы в этой теме. Честно.

Red_Herring в сообщении #1394553 писал(а):
Есть критерии когда такой оператор как мы определили, действует из <...> $\mathscr{E}'$ в $\mathscr{D}'$.
Red_Herring в сообщении #1394566 писал(а):
Я сказал, что общий оператор с ядром Шварца можно применять только к регулярным функциям, получая обобщенные. Например оператор с ядром Шварца $\delta(x)\delta(y)$.
Но у волнового оператора ядро Шварца имеет волновой фронт (подмножество в $T^*(\Omega_1\times \Omega_2)$ не содержащий точек вида $(x,\xi, y,0)$ и $(x,0,y,\eta)$ и потому оператор действует из гладких в гладкие и из обобщенных в обобщенные.
Ну, это именно то, что меня интересует. Условия, при которых оператор с ядром Шварца действует из тех или иных пространств в те или иные пространства. И, главное, как он при этом определяется, если действует не на $\mathscr{D}$.
(Кое-что на этот счёт есть, конечно, даже у Владимирова, но мне пока что всё же кажется, что должно быть что-то более единообразное.)

Не могли бы Вы посоветовать литературу, в которой излагалось бы содержание, как минимум, двух приведённых цитат? Насколько я понимаю, в однотомнике Хёрмандера этого нет (а если, может, и есть, то точно в иных терминах).

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 16:08 
Аватара пользователя
Munin в сообщении #1394572 писал(а):
Верно ли, что оно не менее регулярно? Если не так, то верно ли, что оно менее регулярно в некоторой контролируемой степени (например, на фиксированный конечный порядок)?
Ну например для задачи Коши для $u_{tt}-t^2u_{xx} -Au_x=f$ потеря гладкости будет пропорциональна $\operatorname{Re} A$. А как это квалифицировать решайте сами.

Mikhail_K в сообщении #1394574 писал(а):
Не могли бы Вы посоветовать литературу, в которой излагалось бы содержание, как минимум, двух приведённых цитат? Насколько я понимаю, в однотомнике Хёрмандера этого нет (а если, может, и есть, то точно в иных терминах).
Однотомник это ранние 60тые, а волновой фронт в лучшем случае поздние. Я думаю в двухтомнике Трева. Но определение обычное. Тут фокус в то, что условия на в.ф. гарантируют, что ядро Шварца не просто обобщенная функция на произведении областей, но бесконечно гладкая на одной со значениями в обобщенных функциях на другой. Это условие на в.ф. достаточное, но не необходимое.


Пример: $u_{tt}-\Delta u=0$,тогда в.ф. $u$ содержится в $\{(x,\xi; t,\tau)\colon |\tau|=|\xi|\}$ и если $u=u(x,y,t)$ удовлетворяет в.у. по $(x,t)$ и по $(y,t)$, to . $\Delta_xu=\Delta_y u$ и т.д.

Но если $u_t-\Delta u=0$, то в.ф. $u$ содержится в $\{(x,\xi; t,\tau)\colon 0=|\xi|\}$ ... и то же для Шредингерас

Но в обоих случаях то утверждение "бесконечно гладкая на одной со значениями в обобщенных функциях на другой" верно

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 16:52 
Аватара пользователя
Red_Herring в сообщении #1394579 писал(а):
Однотомник это ранние 60тые, а волновой фронт в лучшем случае поздние. Я думаю в двухтомнике Трева.
Спасибо. Буду читать и разбираться.

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 18:21 
Аватара пользователя
Red_Herring
Извините за офтопик, а не подскажете ли учебник про оператор Лапласа(Бельтрами) на дифформах на многообразиях? (+) по-русски, (+) простой для начинающих.

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение22.05.2019, 22:11 
Аватара пользователя
Munin в сообщении #1394614 писал(а):
одскажете ли учебник про оператор Лапласа(Бельтрами) на дифформах на многообразиях?
Забыл, к сожалению.

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение02.06.2019, 00:44 
Аватара пользователя
Маленький вопрос.

Для уравнения акустики в неоднородной среде
$$
\frac{1}{c^2(x)}u_{tt}-\Delta u+(\nabla\ln\rho(x),\nabla u)=h(x,t)
$$
или хотя бы (в приближении $\rho(x)={\rm{const}}$)
$$
\frac{1}{c^2(x)}u_{tt}-\Delta u=h(x,t)
$$
- известно ли фундаментальное решение (как обобщённая функция от $x,\,t,\,\xi,\,\tau$)?
Если да, то где на него можно посмотреть?

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение02.06.2019, 01:42 
Аватара пользователя
Я боюсь, тут беда в том, что в глобальном масштабе неоднородная среда приводит к страшным явлениям: фокусировка, каустики и т. д. И построить здесь общую теорию - ого-го работка.

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение02.06.2019, 03:11 
Аватара пользователя
Mikhail_K в сообщении #1397219 писал(а):
известно ли фундаментальное решение

Да, в виде интегральных операторов Фурье. Читайте Трев, т. 2.

Альтернативно: Канонический оператор Маслова, (Маслов--Федорюк)
Альтернативно, глобальная конструкция в виде интегрального оператора Фурье с комплексной фазой. Вроде бы в книге Safarov–Vassiliev, The Asymptotic Distribution of Eigenvalues of Partial Differential Operators. volume 155 of Translations of Mathematical Monographs. American Mathematical Society (1997).

Кстати, в микролокальном анализе координаты (вкл. временную) традиционно обозначаются латинскими буквами, а греческие зарезервированы за двойственными. Поэтому фундаментальные решения будут функциями $(x, t; y, s)$.

Munin в сообщении #1397221 писал(а):
Я боюсь, тут беда в том, что в глобальном масштабе неоднородная среда приводит к страшным явлениям: фокусировка, каустики и т. д. И построить здесь общую теорию - ого-го работка.
Примерно 50 лет назад. Все эти "страшные явления" будут и для однородной среды если рассматривать неплоские волны. Вот для краевых задач это гораздо сложнее, но и то сделано для сильно выпуклой и вогнутой границ.

 
 
 
 Re: Нужен ликбез по обобщённым функциям
Сообщение02.06.2019, 03:36 
Аватара пользователя
О! Круто!

А тогда, как я понимаю, и на многообразиях всё то же работает?

 
 
 [ Сообщений: 62 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group