Не могли бы Вы посоветовать какую-нибудь элементарную литературу, где бы рассматривалось применение аппарата обобщённых функций к изучению краевых задач для УЧП (где были бы граничные условия и области), и чтобы было ясно, какая выгода и преимущества в этом подходе. Он позволяет доказать какие-то утверждения, которые нельзя доказать без обобщённых функций? Или доказать их более просто и внятно? Или, может, разработать какие-то методы нахождения решения?
Я не знаю, насколько мой ответ будет содержательным (тем более что вопрос адресован
Red_Herring, разбирающемуся в предмете намного более лучше меня), но попробую.
1) Как отметил
ewert, дельта-образные последовательности возникли до появления дельта-функции Дирака. Было замечено, что если потребовать от последовательности каких-то общих свойств, то для приложений не важно, какую именно дельта-образную последовательность использовать. Попытка выделить "то общее, что есть у всех дельта-образных последовательностей" оказалась успешной и привела к определению дельта-функции. В долгосрочной перспективе бывает полезно добавить один уровень абстракции, если он сокращает объём записи и убирает лишнее (а именно, конкретный выбор дельта-образной последовательности). Конечно, всегда возникает вопрос, стоит ли одно другого (например, если сложная абстракция незначительно сокращает изложение, но требует существенных усилий для её введения). В случае обобщённых функций общим мнением было, что абстракция не очень сложная, а сокращает много. Одним из лучших примеров, по-моему, является учебник Шубина "лекции об уравнениях математической физики". Мне кажется, что столько изложить в таком тонком учебнике можно было только благодаря обобщённым функциям.
2) Другая причина в том, что физики бы всё равно бы пользовались не только дельта-функцией, но и более сложными функциями. Например, точечный диполь (производная от дельта-функции) и потенциалы простого и двойного слоя. Кроме того, некоторые вопросы, связанные с расходимостями в квантовой электродинамике/теории поля связаны с проблемой перемножения обобщённых функций (могу привести ссылки на учебники, если нужно). Любой из этих причин было бы достаточно для внимания математиков и попыток разработки соответствующего аппарата.
3) По поводу литературы есть два ответа. Любой элементарный учебник на то и элементарный, чтобы всё, что там есть, можно было бы изложить и доказать без обобщённых функций (длиннее). Это утверждение из серии "всё, что можно сделать с помощью теории групп, можно сделать и без неё" (кажется, Ландау). Книга Шубина, на мой взгляд, является удачным примером использования обобщённых функций.
4) Если говорить о более профессиональной стороне дела, то в эллиптических и параболических уравнениях без обобщённых функций можно кое-как обойтись (с большим количеством оговорок), то в теории гиперболических уравнений без обобщённых функций вообще никуда, потому что один из основных вопросов в этой теории -- геометрия волновых фронтов, и само понятие волнового фронта использует обобщённые функции.
Наверное, если очень постараться, то можно выписать всё и без обобщённых функций, вручную задавая все условия сшивания на всех подмногообразиях, но зачем, теория и так достаточно сложна и длинна без этого, а так будет в 10 раз длиннее.
Одной из классических монографий по PDE, активно это использующей, является четырёхтомник Хёрмандера "Анализ линейных дифференциальных операторов с частными производными", но надо учесть, что ей уже больше 30 лет, и с тех пор наука продвинулась вперёд. Но всё-таки она неизмеримо ближе к современному состоянию области, чем учебники, в которых учат разделять переменные в прямоугольнике и в шаре.
5) В предыдущем пункте я упоминал оговорки, приведу одну: даже если мы рассматриваем, например, оператор Лапласа в области с гладкой границей, некоторые вопросы (например, спектральные асимптотики или популярная в последнее время "quantum ergodicity") естественно решаются в терминах задачи Коши для уравнения теплопроводности или волнового уравнения в этой области (добавили одну переменную
). В некоторых ситуациях волновое уравнение удобнее (потому что принцип Гюйгенса выполняется и проще контролировать носитель решения), поэтому сразу же возникают те же волновые фронты, с которыми весьма нетривиально бороться, когда они доходят до границы области (например, волны шепчущей галереи и т. п.).