RoadRunnerЯ думаю так. У вас, вероятно, возник когнитивный диссонанс оттого, что Вы не понимаете смысла того, что происходит в "нулевой главе" (которая там называется "Введение") Фихтенгольца, верно ? Т.е. зачем вся эта возня со свойствами чисел ?
Подводные течения "Введения" в Фихтенгольце таковы. Еще древние греки заметили, что с иррациональными числами не всё прозрачно. Потом к ним как-то привыкли, но в 19 веке эта проблема вновь всплыла, при следующих обстоятельствах.
При Ньютоне считалось, что от всякой функции можно взять производную. Впрочем, тогда вообще под функцией понимали аналитическое выражение. Кроме того, тогда в изложении анализа участвовали воображаемые "бесконечно малые" числа (которые положительные, не нулевые, но меньше любого "конечного" (например, рационального) положительного числа).
Коши стал обосновывать математический анаиз более строго, через пределы и т.д., и это внесло ясность в туман. Однако Коши сделал и кой-какие ошибки. Он "доказал" (неверно), что якобы у всякой непрерывной функции есть производная почти всюду, а точки, в которых производной нет, можно пересчитать (т.е. их или конечное число, или их в крайнем случае можно перенумеровать натуральными числами). Однако позже Вейерштрасс построил примеры функций, не дифференцируемых вообще ни в одной точке. Иначе говоря, есть непрерывные кривые, к которым ни в одной (!) точке нельзя провести касаетльную ! Т.е. утверждение, казавшееся наглядно очевидным, или по крайней мере очень правдоподобным, оказалось неверным.
И вот тут возникло понимание, что некоторые "очевидные" вещи необходимо строго обосновывать. А иначе получается хождение по воде, причем провалиться под воду можно в самый неожиданный момент.
Или, возможно, оно возникло еще раньше. Еще раньше Больцано пытался строго обосновать такой наглядно очевидный факт: если функция непрерывна, и на концах отрезка принимает значения разных знаков, то где-то внутри она принимает значение ноль.
Теперь смотрите: одно "наглядно очевидное" оказалось верным (теорема Больцано о промежуточном значении), а второе нет (пример Вейерштрасса). Непонятно, где граница, которая отделяет совсем уж очевидное от того, что может быть и сомнительно ? И было понято и осознано, что с теми интуитивно очевидными, но несколько расплывчатыми, понятиями об иррациональных числах, которые были у математиков на тот момент, достаточно надежных рассуждений проводить не удастся. Значит, надо построить более аккуратную теорию действительных чисел. И ее построили, почти одновременно и независимо четыре человека (Мерэ, Вейерштрасс, Кантор и Дедекинд). Самую годную концепцию выдвинул Дедекинд. Она в Фихтенгольце и излагается.
Свойства рациональных чисел в Фихтенгольце перечисляются, фактически, просто для сведения (с ними никаких проблем, в общем-то, за всю историю не было). Напротив, понятие иррациональных чисел вводится, и свойства их доказываются.
Без строгой теории вещественных чисел нельзя доказать, например, и такое утверждение: всякая непрерывная на отрезке функция где-то принимает максимальное значение.
Однако Вы, в первом приближении, можете поступить так. Просто это введение просмотреть, что поймете (а главное, что надо себе уяснить --- это "свойство полноты" вещественных чисел) --- хорошо, а что не поймете --- ну и ладно, потом дойдет когда-нибудь. И после того переходите к первой главе, "Теория пределов".
-- 31.03.2019, 00:55 --вводится понятие нуля, как понятие,
Вводится понятие как понятие ... В общем так. Цель, смысл и логика в первом параграфе Фихта, несомненно, есть. Но уразуметь Вы их сейчас не сможете. Да я и вообще не вижу смысла об этом говорить. (Впрочем, основной посыл описать просто: (а) напоминаются основные свойства, и (б) демонстрируется, как одни из этих свойств, самые основные, влекут другие, более сложные.) Моя рекомендация такая: относиться к этому параграфу просто как к списку основных свойств рациональных чисел, которые Вы, скорее всего, знаете еще со школы. И не заморачиваться, а то до собственно матана не дойдете.