2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5  След.
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 19:55 
Выскажу по поводу кощунственную для многих мысль: вера в существование формул для решения уравнений 3-4 - это именно вера, её можно оспорить и подвергнуть сомнению. Причина в том, что мы верим в возможность извлечь корень любой степени из комплексного числа, как учим этому студентов. На самом деле это невозможно уже для корня 3 степени- не существует способа по данному комплексному числу, заданному в алгебраической форме, выписать его корни, кроме квадратных, также в алгебраической форме. Поэтому и угол не поделить на три части, по синусу тройного угла не найти сам угол, не решить реально уравнения 3-4 степени по знаменитым формулам и тд - всё это эквивалентные задачи. На мой взгляд давно пора всю теорию решения полиноминальных уравнений в классическом виде, начиная с формул для 3-4 степени и далее любой, передавать в архив для изучения историками и энтузиастами. Есть другие методы, реально эффективные и для выписывания явных формул, и для численных расчётов.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 20:10 
Аватара пользователя
novichok2018 в сообщении #1312200 писал(а):
Выскажу по поводу кощунственную для многих мысль: вера в существование формул для решения уравнений 3-4 - это именно вера, её можно оспорить и подвергнуть сомнению. Причина в том, что мы верим в возможность извлечь корень любой степени из комплексного числа, как учим этому студентов. На самом деле это невозможно уже для корня 3 степени- не существует способа по данному комплексному числу, заданному в алгебраической форме, выписать его корни, кроме квадратных, также в алгебраической форме.


Вы смешиваете разрешимость в комплексных радикалах и разрешимость в вещественных радикалах.

То, что любое кубическое уравнение решается в комплексных радикалах -- это формула Кардано.

То, что не любое решается в вещественных радикалах (даже если все корни вещественные) -- это casus irreducibilis

https://en.wikipedia.org/wiki/Casus_irreducibilis

известный уже почти 200 лет. Собственно, этот случай будет иметь место всегда, когда многочлен неприводим и все три корня вещественны.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 22:30 
g______d
В формуле Кардано стоит корень третьей степени из комплексного числа. Вы умеете извлекать такой корень? Я - нет.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 22:58 
Аватара пользователя
novichok2018 в сообщении #1312224 писал(а):
Вы умеете извлекать такой корень? Я - нет.


Что значит "умеете извлекать"? Например, умею ли я извлекать корень третьей степени из двух? Или из $i$? Если под "извлекать" подразумевается "выразить через вещественные радикалы", то см. выше.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 23:02 

(Некорректный совет)

Ну если посчитать очень надо хочется, то можно плюнуть на математическую строгость и вспомнить как оно вводилось, $\sqrt{-1}$ (ну и $\sqrt[3]{-1}$ заодно) считать неким таким числом, которое в результатах всё равно сократится и всё останется вещественным. А то что в процессе в выкладках будет нечто малопонятное - ну, тут уж "или шашечки, или ехать".

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 23:08 
novichok2018 в сообщении #1312224 писал(а):
g______d
В формуле Кардано стоит корень третьей степени из комплексного числа. Вы умеете извлекать такой корень? Я - нет.
Точно так же как и корень третьей степени из вещественного числа.
В обоих случаях можно либо удовлетвориться простой записью радикала, либо применить алгоритм (Ньютона) для получения (приблизительного) численного значения.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 23:22 
Зачем подменять высказанные чётко формулировки на свои другие? Было сформулировано: по данному комплексному числу в алгебраической форме не умею выписывать корень (или корни) из него также в алгебраической форме. Не больше-не меньше. Если считать, что это умеешь-есть повод радоваться формуле Кардано, если считать что не умеешь-есть повод ничего хорошего в ней не видеть.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 23:33 
Аватара пользователя
novichok2018 в сообщении #1312232 писал(а):
Зачем подменять высказанные чётко формулировки на свои другие? Было сформулировано: по данному комплексному числу в алгебраической форме не умею выписывать корень (или корни) из него также в алгебраической форме.
g______d в сообщении #1312202 писал(а):
То, что не любое решается в вещественных радикалах (даже если все корни вещественные) -- это casus irreducibilis
https://en.wikipedia.org/wiki/Casus_irreducibilis

известный уже почти 200 лет.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 23:53 
novichok2018 в сообщении #1312232 писал(а):
если считать что не умеешь-есть повод ничего хорошего в ней не видеть
Ну нет хорошего и нет (а формула есть, вопреки вашему изначальному «вера в существование формул для решения уравнений 3-4» — они существуют ровно в том виде, в котором про них говорят: выражение в радикалах; как уже говорили, никто не обещал вещественных радикалов, а трудность их численного нахождения всё равно совершенно одинаковая). Тем временем некоторые оценивают действительность более интересным образом, чем абсолютизированное зачем-то «хорошо — плохо».

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение13.05.2018, 23:53 
Аватара пользователя
Тогда поясните вашу "высказанную чётко" формулировку

novichok2018 в сообщении #1312232 писал(а):
в алгебраической форме


А потом поищите где-нибудь, что такое вещественные радикалы, и сравните.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение14.05.2018, 07:44 
novichok2018 в сообщении #1312232 писал(а):
Было сформулировано: по данному комплексному числу в алгебраической форме не умею выписывать корень (или корни) из него также в алгебраической форме.

Поищите формулу Муавра.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение14.05.2018, 07:49 
Дать ссылку, что такое алгебраическая форма комплексного числа, зачем это спрашивать, это первое определение в курсе КП? Вещественные/невещественные радикалы тут не при чём. Извлеките корень кубический из $123+117 i$, приведите ответ. Такие корни нужно извлекать по формуле Кардано.
И формула Муавра тут не при чём. Кстати он не Муавр, а де Муавр, фамильная приставка входит в фамилию, это даже в адресной книге телефона сейчас отражено.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение14.05.2018, 08:03 
Аватара пользователя
А чем Вас не устраивает вот это, например?

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение14.05.2018, 08:05 
Аватара пользователя
novichok2018 в сообщении #1312266 писал(а):
Извлеките корень кубический из $123+117 i$, приведите ответ.


А в чём подвох? Ну будут там косинусы арктангенсов, ну и что? Формула Кардано же не про то, как обойтись без тригонометрии в "алгебраической форме записи комплексного числа", а про то, как свести решение кубического уравнения к конечному количеству стандартных алгебраических операций над коэффициентами и извлечению комплексных корней третьей степени. Про то, можно ли сами корни вычислять без тригонометрии, она ничего не говорит. Иногда даже можно доказать, что нельзя, см. ссылку про вещественные радикалы.

 
 
 
 Re: Дискуссионное решение в радикалах кубического уравнения
Сообщение14.05.2018, 09:07 
пианист
Да устраивает, только всё то же (корни с любой точностью) тем же самым (альфой) можно получить и без формулы Кардано. На мой взгляд записать эту формулу или словами КОРНИ ЭТОГО КУБИЧЕСКОГО УРАВНЕНИЯ - это почти одно и тоже. При всём уважении к Кардано и другим, кто формулу вывел. Можно думать иначе-больше не буду спорить.

 
 
 [ Сообщений: 70 ]  На страницу Пред.  1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group