2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4  След.
 
 Матрица - это что?
Сообщение25.04.2018, 23:25 
Во многих книгах видим: прямоугольная таблица и дальше, в зависимости от амбиций , чисел, элементов поля, кольца и т.д.
Ладно. Пусть таблица. Но ПРЯМОУГОЛЬНАЯ.... Прямые углы у таблицы? Приемлю определение Элона Лимы Uma matriz é uma lista de
números reais com ı́ndices duplos, но все-таки, термин list (англ.) подразумевает упорядоченность.

Так что такое матрица?

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 00:07 
Аватара пользователя
Alexey Rodionov в сообщении #1307421 писал(а):
Так что такое матрица?
Сказано же: прямоугольная таблица чисел (или ещё чего-нибудь, что обычно можно складывать, умножать…).

Alexey Rodionov в сообщении #1307421 писал(а):
Пусть таблица. Но ПРЯМОУГОЛЬНАЯ.... Прямые углы у таблицы?
Сколько таблиц видел — обычно углы прямые. Даже если таблица не прямоугольная. Таблица с косыми углами как-то некрасиво выглядит. А "прямоугольная" означает, что её можно разбить на строки равной длины или на столбцы равной высоты.

Но, разумеется, если вместо апелляции к хорошо знакомому образу прямоугольной таблицы Вам понятнее "список чисел с двумя индексами" — это ваше дело. И да, упорядоченность подразумевается. И в таблице, и в списке.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 00:14 
Аватара пользователя
Ну.. геометрические образы в алгебре, конечно, условность:
учебник по алгебре писал(а):
Квадратная матрица называется треугольной, если ...

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 01:01 
Аватара пользователя
Munin в сообщении #1189792 писал(а):
Цитата:
Определение. Пусть $I$ и $J$ суть два множества (называемые в дальнейшем множеством строчных индексов и множеством столбцовых индексов, соответственно), а $X$ произвольное множество. Тогда матрицей типа $I\times J$ с компонентами из $X$ называется произвольное семейство $x\colon I\times J\to X.$ Значение $x$ на паре $(i,j)\in I\times J$ называется компонентой (или коэффициентом или матричным элементом) матрицы $x$ в позиции $(i,j)$ (иногда на месте $(i,j)$).

В большинстве элементарных учебников линейной алгебры произносятся бессмысленные заклинания, наподобие следующего: "матрицей называется прямоугольная таблица чисел". Как отмечают Семенов и Шмидт, в этом определении верно все, кроме трех слов: "прямоугольная", "таблица", "чисел". Прямоугольные таблицы являются одним из способов изображения матриц, но отнюдь не самими матрицами. Дело в том, что обычно рассматриваются конечные матрицы, строки и столбцы которых индексированы последовательными натуральными числами. Это вводит в заблуждение.

Пусть $I=J=\{\mathrm{Euro, DM, FF, Lit}\}.$ Решение EMU зафиксировало матрицу обменных курсов для всех стран еврозоны. Тем не менее в 1999-2001 годах в банках Германии, Италии и Франции эта (одна и та же!) матрица изображалась по разному.

Нет никакого естественного способа линейно упорядочить бесконечное множество. Что такое верхние треугольные матрицы в $M(X,R),$ где $X$ — счетное множество? Биекции $X\leftrightarrow\mathbb{N},X\leftrightarrow\mathbb{Z},X\leftrightarrow\mathbb{Q},$ где множества $\mathbb{N},\mathbb{Z},\mathbb{Q}$ рассматриваются с естественными порядками, определяют совершенно различные множества верхних треугольных матриц. Множества $B(\mathbb{N},K)$ и $B(\mathbb{Z},K)$ образуют различные (не изоморфные!) кольца, а множество $B(\mathbb{Q},K)$ вообще не является кольцом (потому что произведение двух матриц не определено!)

(Вавилов. Конкретная теория колец.)

----------------
Someone в сообщении #1307437 писал(а):
И да, упорядоченность подразумевается. И в таблице, и в списке.

Не всегда, имхо. Если говорят о верхнетреугольных матрицах, об алгоритме Гаусса, о произведениях матриц с бесконечными множествами индексов, - то да. А самые первые определения можно дать и без упорядоченности.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 01:05 
М-да, если упорядоченность и конечность множества индексов даны, то можно считать его равным $1..n$ для некоторого $n\in\mathbb N$. А если нет… но это уже обобщения, начинают-то с конкретики.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 01:10 
Аватара пользователя
Это всё, конечно, замечательно, но если я студентам на первой же лекции начну определять матрицы по Вавилову, то последствия будут катастрофическими. Так что уж позвольте мне говорить о прямоугольных таблицах чисел, в которых строки и столбцы занумерованы натуральными числами.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 01:14 
Ну, Alexey Rodionov мог искать формализацию (хотя странно — что там искать, всё можно сформулировать самостоятельно, если стремление к формализации не вчера появилось), уже наверняка имея представление; а учить, давая сразу наиболее абстрактные определения, конечно же не очень конструктивно — тут вряд ли кто-то будет спорить.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 01:26 
Аватара пользователя
Someone в сообщении #1307461 писал(а):
но если я студентам на первой же лекции начну определять матрицы по Вавилову

:-)

Ну, я и не предлагаю студентам на первой лекции. Однако ТС явно "хочет странного", так вот оно бывает.

-- 26.04.2018 01:42:00 --

arseniiv в сообщении #978034 писал(а):
$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$ — квадратная матрица.
Munin в сообщении #978054 писал(а):
$\begin{pmatrix} \rotatebox[c]{-45}{\(1\)}\!\!\!\! & \rotatebox[c]{45}{\(2\)} \\ \rotatebox[c]{45}{\(3\)}\!\!\!\! & \rotatebox[c]{-45}{\(0\)} \end{pmatrix}$ — круглая матрица…

(слегка отредактировано)

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 02:41 
Munin в сообщении #1307456 писал(а):
Определение. Пусть $I$ и $J$ суть два множества (называемые в дальнейшем множеством строчных индексов и множеством столбцовых индексов, соответственно), а $X$ произвольное множество. Тогда матрицей типа $I\times J$ с компонентами из $X$ называется произвольное семейство $x\colon I\times J\to X.$ Значение $x$ на паре $(i,j)\in I\times J$ называется компонентой (или коэффициентом или матричным элементом) матрицы $x$ в позиции $(i,j)$ (иногда на месте $(i,j)$).


Вот и славно. Вот и спасибо. Для студентов изменим маленько и летальных исходов не будет.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 14:24 
Аватара пользователя
Нет, вот на это мы не договаривались. Для студентов - лучше следуйте совету Someone.

Это определение - стоит показывать только тем студентам, которые подходят после лекции, недовольные традиционной "таблицей чисел".

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 15:13 
Munin в сообщении #1307456 писал(а):
строчных индексов и множеством столбцовых индексов
Осталось определить слова "строчные" "столбцовые". :mrgreen:

-- 26.04.2018, 12:16 --

Munin в сообщении #1307610 писал(а):
Это определение - стоит показывать только тем студентам, которые подходят после лекции, недовольные традиционной "таблицей чисел".
А потом появляются мемы: профессора скрывают правду. :o А на самом деле...

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 15:39 
Аватара пользователя
Yodine в сообщении #1307633 писал(а):
Осталось определить слова "строчные" "столбцовые". :mrgreen:

Грубая ошибка. Отдельные слова не дефинируются. Дефинируются именно словосочетания. Если вы произнесёте "индекс", "строчный" или "столбцовый" по-отдельности, то это ничего не будет значить.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 15:55 
Я понимаю, про что вы и согласен. Я про то, что определить "строчных индексов" достаточно трудно и запутанно, имхо.
При объяснении понятия матрица некоторым знакомым школьникам далеко нестарших классов, я отталкивался от понятия таблица и примера таблица умножения, отлично заходило. ) Даже 3х и 4х мерные матрицы легко понимались. )

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 16:08 
Аватара пользователя
1. Матрица - это кортеж $(I, J, X, f)$, где $I, J, X$ - произвольные множества, $f$ - функция из $I \times J \to X$.
2. Если $A = (I, J, X, f)$ - матрица, то $I$ называется множеством строчных индексов $A$.
3..$n$. Фразы, аналогичные 2 для столбцовых индексов, элементов на позициях и т.д.

При этом сразу становится понятно, что такое матрица, правда?
Чтобы понять, что до такого уровня доходить обычно не стоит, достаточно вспомнить, что скажем поле не является группой, упорядоченное поле не является ни полем, ни упорядоченным множеством, рациональные числа (при всех стандартных определениях) не являются подмножеством вещественных и т.д.

 
 
 
 Re: Матрица - это что?
Сообщение26.04.2018, 16:24 
Или так даже.
1. отображение прямого произведения кортежа произвольных множеств на несущее множество.
:-)

 
 
 [ Сообщений: 56 ]  На страницу 1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group