2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 42, 43, 44, 45, 46, 47, 48 ... 62  След.
 
 Re: на экзамене
Сообщение22.03.2017, 18:56 
На пересдаче.

Студент-физик решает уравнение $x^2=-3.$ У него получается $x=-\sqrt3$
Увидив такое безобразие, студент-математик поправляет: $x=-\sqrt{\pm 3}$

 
 
 
 Re: на экзамене
Сообщение25.03.2017, 02:08 
Аватара пользователя
Реальный случай, рассказанный коллегой. Общая физика, электромагнетизм. В билете сила Ампера. Формула написана так:
$$\vec{F}=\frac{\mu_0}{2\pi}\frac{I_1I_2}{b}.$$
На резонное замечание, что левая часть - вектор, а правая - скаляр, студент после небольшого раздумья отреагировал, внеся в формулу коррекцию. Чтобы хоть чуть-чуть развлечься, предлагаю угадать исправление.

(Ответ)

Студент поставил стрелку над $\mu_0$.

 
 
 
 Re: на экзамене
Сообщение25.03.2017, 10:26 
Аватара пользователя
Поставил стрелочку над $I$?

 
 
 
 Re: на экзамене
Сообщение25.03.2017, 10:39 
Metford,
Какие-то у Вас студенты зашоренные!
Наш бы, наверняка, поставил стрелочку над $\pi$ или над двойкой.

 
 
 
 Re: на экзамене
Сообщение25.03.2017, 14:28 
Аватара пользователя
Стрелочка должна быть над всем выражением!
(А вот реально случившегося варианта я не угадал.)

 
 
 
 Re: на экзамене
Сообщение25.03.2017, 14:38 
Аватара пользователя
Ну, что вы все, ежу ясно, что $I_1I_2$ это направленный отрезок! Значит $\overrightarrow{I_1I_2}$.

 
 
 
 Re: на экзамене
Сообщение25.03.2017, 16:54 
У меня была версия, что стрелочка будет направлена влево. В конце концов, почему бы и нет?

 
 
 
 Re: на экзамене
Сообщение02.04.2017, 14:11 

(Оффтоп)

Я бы зачеркнул стрелочку слева.

 
 
 
 Re: на экзамене
Сообщение15.05.2017, 21:03 
Аватара пользователя
Из контрольной работы по МС:
Цитата:
длина и ширина доверительных интервалов

Кстати, может, кто-то расшифрует такую фразу:
Цитата:
ширина интервала зависит от стандартной ошибки, которая в свою очередь зависит от объема выборки и при рассмотрении числовой переменной от изменчивости данных дают более широкие доверительные интервалы, чем исследования многочисленного набора данных немногих переменных

P.S. Текст повторен в 2 работах (интеренетом пользоваться разрешалось).

 
 
 
 Re: на экзамене
Сообщение31.05.2017, 11:06 
Аватара пользователя

(Не смищно)

Дело было на предзачёте по анализу.

Человек пытался сдать решение задачи Штурма—Лиувилля, которое не хотело становиться правильным четыре попытки подряд. После серии вопросов человеку, что значит тот или иной член в уравнении Ш.—Л. и причём тут скалярное произведение, ему был задан вопрос: "Вы знаете, как называется уравнение, которое вы решаете?", ответ на который был таким: "Ну...ээээ...там фамилия сложная какая-то, через дефис пишется...".

Пёрлов выдавать он не стал, пошёл и посмотрел в конспект, гордо выпалив "Штурма-Лиувилля!". Вопрос "так это один человек или нет?" препод задавать, к сожалению, не стал.

 
 
 
 Re: на экзамене
Сообщение31.05.2017, 11:21 

(Оффтоп)

StaticZero в сообщении #1220409 писал(а):
Пёрлов выдавать он не стал, пошёл и посмотрел в конспект, гордо выпалив "Штурма-Лиувилля!". Вопрос "так это один человек или нет?" препод задавать, к сожалению, не стал.
Видимо, испугался, что студент ответит, что это не фамилия, а историческое событие :mrgreen:
Кстати, интересно, кто-нибудь так отвечал хоть раз?

 
 
 
 Re: на экзамене
Сообщение31.05.2017, 11:27 
Аватара пользователя

(Оффтоп)

rockclimber в сообщении #1220411 писал(а):
Видимо, испугался, что студент ответит, что это не фамилия, а историческое событие :mrgreen:

Мы над этим потом весь перерыв стебались. Тем более, что раз человек, хоть и с седьмой попытки, но сдал задачку, про него говорили — растёт будущий Суворов.

 
 
 
 Re: на экзамене
Сообщение31.05.2017, 20:36 
StaticZero в сообщении #1220409 писал(а):
После серии вопросов человеку, что значит тот или иной член в уравнении Ш.—Л. и причём тут скалярное произведение, ему был задан вопрос: "Вы знаете, как называется уравнение, которое вы решаете?"

Поскольку последний вопрос был откровенно не в тему -- неудивительно, что товарищ лёг в ступор. Тем более что скалярное произведение к уравнению Ш.-Л. непосредственного отношения и не имеет. Тем более что и уравнения-то такого не существует -- есть только задача (ну или оператор).

Короче: куда ни кинь -- всюду экзаменаторы...

-- Ср май 31, 2017 22:32:48 --

provincialka в сообщении #1216610 писал(а):
Кстати, может, кто-то расшифрует такую фразу:

Ну Вы же сами и ответили. В сети эта формулировка гуляет.

И это -- явно какой-то машинный перевод с забугорного. Но вот с какого конкретно -- мне нагуглить не удалось. Может, кому больше повезёт.

 
 
 
 Re: на экзамене
Сообщение31.05.2017, 23:17 
Аватара пользователя
ewert в сообщении #1220618 писал(а):
Тем более что и уравнения-то такого не существует -- есть только задача (ну или оператор).

(Оффтоп)

"Марь Иванна, это как? Задница есть, а слова нет?" (с)

УравнениеЗадача была поставлена так (краевые условия опущены):
$$
x^2 y_{xx} + 4 x y_x + (4 - \lambda) y = 0.
$$
А затем по собственным функциям нужно было что-то разложить. Для того, чтоб раскладывать, надо узнать правильный вес, с которым собственные функции будут ортогональны. А узнать его можно только из уравнения.

-- 31.05.2017, 23:19 --

Последовательность вопросов всё толще намекала на то, что товарищ не знает основных определений.

 
 
 
 Re: на экзамене
Сообщение01.06.2017, 01:44 
Аватара пользователя
ewert в сообщении #1220618 писал(а):
И это -- явно какой-то машинный перевод с забугорного.

Точно! А я не догадалась! Спасибо... Теперь могзи немного встали на место..

 
 
 [ Сообщений: 922 ]  На страницу Пред.  1 ... 42, 43, 44, 45, 46, 47, 48 ... 62  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group