2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11  След.
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 08:16 
Аватара пользователя
Munin, Я уже совсем не понимаю, что Вы предлагаете? Просто закрыть класс элементарных функций? Так не получится же, тогда придётся сжечь все учебники, задачники и написать новые, а зачем?
Ничего себе класс, замкнутый относительно арифметических действий и суперпозиции, состоит из непрерывных функций, достаточно богат, исторически сложился, ... И чего он Вам поперёк горла встал?

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 09:40 
Я не могу сказать, что хочет Munin, но по-моему он хочет примерно того же, чего хотел бы я. Я хотел бы, чтобы для начала разделение функций на элементарные и неэлементарные вообще перестало производиться. Чтобы термин "элементарная функция" вообще был забыт. Чтобы в учебниках вместо "таблицы производных элементарных функций" была "таблица производных некоторых функций". Тогда в следующем учебнике в таблицу может и добавят эллиптические интегралы или какие-нибудь ещё функции, которые сейчас туда не попадают из-за искусственного барьера. Я хотел бы, чтобы перестало создаваться впечатление, что все функции, кроме особо избранных — элементарных — сложные и непонятные. Чтобы при столкновении с функциями Бесселя или сферическими функциями или гамма-функцией или теми же эллиптическими интегралами студент не испытывал негатива, из-за того, что они неэлементарные. Чтобы мантра "интеграл не берётся в элеменарных функциях" была признана вредной и забыта (прокомментирую цитатой из классики по памяти: мы знаем, что эта задача не имеет решения, мы хотим знать как её решать).

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 09:57 
Аватара пользователя
Никакого подобного впечатления не создается и негатива не возникает. Проблема надумана. Если нужно привлечь специальные функции, их просто привлекают и работают с ними. А уж гамма-функцию так вообще знают и любят все.

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 10:34 
Аватара пользователя
warlock66613 в сообщении #1197589 писал(а):
Чтобы в учебниках вместо "таблицы производных элементарных функций" была "таблица производных некоторых функций"

У меня тоже ощущение, что проблема надумана.
Когда я читал в учебнике "Таблица производных элементарных функций", я так и понимал её: "Таблица производных некоторых функций". Что к классу "элементарных функций" не нужно слишком серьёзно относиться, я, в общем, понимал всегда.
Также не вижу никаких "плясок с бубном" насчёт неберущихся интегралов. Понятно, что для некоторых интегралов можно получить явное аналитическое выражение имеющимися средствами, для некоторых нет. Я смутно припоминаю, что в учебнике были и теоремы (но без доказательства), что интегралы от таких-то функций неэлементарны, но эти теоремы были написаны мелким шрифтом и никакого акцента на них не было.

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 10:39 
Аватара пользователя
warlock66613 в сообщении #1197589 писал(а):
Я хотел бы, чтобы для начала разделение функций на элементарные и неэлементарные вообще перестало производиться.
Очень странное требование. Выделение класса элементарных функций не может мешать использованию других функций. Наоборот, без такого выделения невозможно мотивировать введение специальных функций. Всегда будет стоять вопрос о возможности выразить вновь придуманную функцию через ранее известные.

Munin ранее предъявлял претензии по поводу того, что много времени уделяется методам интегрирования именно в элементарных функциях.
Здесь речь идёт об образовании. В тот момент, когда изучается техника интегрирования, учащиеся никаких функций, кроме элементарных, не знают, и их просто невозможно ввести. Но эта техника впоследствии работает и для неэлементарных функций.
Простой пример. В теории вероятностей и математической статистике часто встречаются функции $$\varphi(x)=\frac 1{\sqrt{2\pi}}e^{-\frac{x^2}2}\text{ и }\Phi(x)=\int_0^x\limits\varphi(t)dt.$$ Вторая из них не элементарная, является первообразной первой и обычно называется функцией Лапласа. Имеем $\varphi'(x)=-x\varphi(x)$ и $\Phi'(x)=\varphi(x)$. Интегрируя по частям, получим $$\int\Phi(x)dx=x\Phi(x)-\int x\,d\Phi(x)=x\Phi(x)-\int x\varphi(x)dx=x\Phi(x)+\varphi(x)+C.$$
warlock66613 в сообщении #1197589 писал(а):
Тогда в следующем учебнике в таблицу может и добавят эллиптические интегралы или какие-нибудь ещё функции, которые сейчас туда не попадают из-за искусственного барьера.
Гарантированно не добавят, поскольку в момент изучения этой таблицы никаких "эллиптических интегралов или каких-нибудь ещё функций" не будет. А когда студенты (или уже не студенты), изучив предварительно дифференциальное и интегральное исчисление, возьмутся за теорию "эллиптических интегралов или каких-нибудь ещё функций", никто не помешает им изучить и соответствующие формулы.

Не забывайте также о том, что всяких "специальных" функций неизмеримо больше, чем основных элементарных, и если их все засунуть в таблицы производных и интегралов, то эти таблицы будет невозможно запомнить. Не говоря уже о том, что бóльшая часть этих таблиц будет состоять из непонятных сочетаний символов.

warlock66613 в сообщении #1197589 писал(а):
Я хотел бы, чтобы перестало создаваться впечатление, что все функции, кроме особо избранных — элементарных — сложные и непонятные.
На самом деле, если мы начнём вводить неэлементарные функции слишком рано, то ситуация будет ещё хуже. Эти функции действительно имеют более сложное происхождение, чем элементарные, и требуют более развитого математического аппарата. А элементарные функции изучаются ещё на школьной скамье и к моменту изучения дифференциального и интегрального исчисления являются вполне привычными (по крайней мере, для хороших школьников и студентов).

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 14:06 
Аватара пользователя
bot в сообщении #1197578 писал(а):
Munin, Я уже совсем не понимаю, что Вы предлагаете? Просто закрыть класс элементарных функций? Так не получится же, тогда придётся сжечь все учебники, задачники и написать новые, а зачем?

Ну что вы, в учебниках и задачниках останется много чего, что сжигать не надо.

Просто не надо раздувать такую важность из "неберущихся интегралов". Вместо этого, надо по-человечески сказать, что вот этот интегральчик мы назовём буковкой $K,$ а вон тот - буковкой $\mathrm{erf}.$ Вот, мол, в седьмом классе вы тоже нечто новое для себя называли буковками $\sin$ и $\ln,$ и ничего, мозг не взорвался.

Потренироваться брать интегралы, которые "берущиеся", тоже стоит. Это важный навык.

warlock66613
+1.

Про "задачу, не имеющую решения" - я боюсь, речь шла о чём-то более хитром. Ну да, вообще, цитата хорошая, и в жизни пригождается много где.

ex-math в сообщении #1197591 писал(а):
А уж гамма-функцию так вообще знают и любят все.

Одна из наименее нужных функций. В теории струн только и нужна.

Основные функции - это "урматфизический" букет: Лежандр, Эрмит, Бессель, Эйри и их ближайшие родственники и знакомые.

Mikhail_K в сообщении #1197598 писал(а):
Когда я читал в учебнике "Таблица производных элементарных функций", я так и понимал её: "Таблица производных некоторых функций".

Ну вот это понимают далеко не все и не всегда. И преподаватели часто этому пониманию мешают. Как даже в этой теме было продемонстрировано.

-- 06.03.2017 14:20:51 --

Someone в сообщении #1197599 писал(а):
Munin ранее предъявлял претензии по поводу того, что много времени уделяется методам интегрирования именно в элементарных функциях.

Вот это ПРЯМАЯ ЛОЖЬ.

Напротив, я считаю навыки интегрирования одними из важнейших, которые нужно тренировать специалистам, "применяющим математику на практике": физикам и техникам.

Someone в сообщении #1197599 писал(а):
Наоборот, без такого выделения невозможно мотивировать введение специальных функций. Всегда будет стоять вопрос о возможности выразить вновь придуманную функцию через ранее известные.

"Специальные функции" ничем не специальные. Да, такой вопрос будет стоять. Но во-первых, он легко решается безо всякого "класса элементарных функций" (и может иметь решение типа "функцию $f$ можно выразить через $g,$ а функцию $g$ можно выразить через $f$"), а во-вторых, не падайте со стула, он вообще может не играть практической роли!

Пример - мои любимые присоединённые полиномы Лежандра, которые выражаются через полиномы от тригонометрических функций, но это вообще мало кому интересно (кроме ручного построения графика), а интересны их ортогональность и полнота, связь друг с другом, и тому подобные вещи.

Someone в сообщении #1197599 писал(а):
Гарантированно не добавят, поскольку в момент изучения этой таблицы никаких "эллиптических интегралов или каких-нибудь ещё функций" не будет. А когда студенты (или уже не студенты), изучив предварительно дифференциальное и интегральное исчисление, возьмутся за теорию "эллиптических интегралов или каких-нибудь ещё функций", никто не помешает им изучить и соответствующие формулы.

Это всё из серии "вредительское построение курса преподавания математики" вообще. Разумеется, в момент изучения таблицы интегралов, студентам просто необходимо сказать, что "вот это функция ошибок, вот это эллиптический интеграл, а вот это - функция Бесселя, не пугайтесь". Пусть они и не введены должным образом на этом этапе.

И вообще, с самого 7-го класса школы, всем студентам обязательно необходимо втолковывать, что функции бывают не только заданные формулой. Но и рядом, и кусочно, и всякими другими способами. (Не говоря уже про функции, существование которых доказано, а вот конструктивного способа построения не указано, но уж этим пусть математики развлекаются - на практике это не нужно.)

Someone в сообщении #1197599 писал(а):
Не забывайте также о том, что всяких "специальных" функций неизмеримо больше, чем основных элементарных, и если их все засунуть в таблицы производных и интегралов, то эти таблицы будет невозможно запомнить.

А запоминать всё - и не надо. Надо устранить границу между "таблица" и "вне таблицы".

Разумеется, Градштейна-Рыжика надо попросту держать под рукой, и всё. Благо, что в электронном виде это не кирпич на пять килограммов, и не является библиографической редкостью.

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 14:43 
Аватара пользователя
Munin в сообщении #1197629 писал(а):
Someone в сообщении #1197599 писал(а):
Munin ранее предъявлял претензии по поводу того, что много времени уделяется методам интегрирования именно в элементарных функциях.

Вот это ПРЯМАЯ ЛОЖЬ.
Простите, но эту ветку обсуждения трудно было понять иначе (выделено мной):
grizzly в сообщении #1197108 писал(а):
Anton_Peplov в сообщении #1197105 писал(а):
Ну, если не считать, что половину практических занятий по матану они тренируются брать интегралы от элементарных функций в элементарных функциях.
Чтобы это делать не обязательно вводить понятие элементарной функции.
    Munin в сообщении #1197132 писал(а):
    Вообще-то обязательно. Потому что про некоторые интегралы говорится, что они "не берутся". И вокруг этой неберущести куча танцев с бубном и завываний.
(Это я просто объясняю, откуда растут недоразумения -- я не призываю начинать снова ходить по кругу.)
((Пользуясь случаем, признаю, что прозвучал один голос в Вашу поддержку :))

 
 
 
 Re: Опять про элементарные функции
Сообщение06.03.2017, 15:27 
Аватара пользователя
Да, сформулировано было плохо. Признаю. Ну, надеюсь, я уточнил, что брать интегралы - умение полезное.

Не полезным, с моей точки зрения, является мистификация "неберущихся интегралов". И искусственное разграничение тех, которые берутся в элементарных, от тех, которые нет. Это разграничение касается исключительно учебных примеров в момент обучения.

Кроме того, хорошо бы сразу сказать, что делать с "неберущимися". Ряды, оценки сверху и снизу, аппроксимации, численные методы - хотя бы, чтобы эти слова уже звучали в тот момент, когда студенты знакомятся с первым же "неберущимся интегралом". Пусть и с комментариями, что "толком вам это расскажут позже... или самим доучиваться придётся".

Хорошо бы, конечно, этому учить. Но это большое изменение программы. Я себе представляю степень косности.

grizzly в сообщении #1197640 писал(а):
((Пользуясь случаем, признаю, что прозвучал один голос в Вашу поддержку :))

Более чем один.

 
 
 
 Re: Опять про элементарные функции
Сообщение07.03.2017, 09:00 
Аватара пользователя
Munin в сообщении #1197629 писал(а):
Просто не надо раздувать такую важность из "неберущихся интегралов"

А кто раздувает? Вот Чебышев, к примеру, диф. биномом раздувал? По-мне так - просто естественный научный интерес.
Вы бы на его месте не заинтересовались?

 
 
 
 Re: Опять про элементарные функции
Сообщение07.03.2017, 09:33 
Аватара пользователя
Munin, операции интегрирования и дифференцирования - взаимно обратные. Так почему же производная любой элементарной функции - элементарна, а первообразная - не всегда элементарна? Разве это не мистика и не заговор Высших Сил против интегрирования? :shock:

 
 
 
 Re: Опять про элементарные функции
Сообщение07.03.2017, 10:06 
Munin в сообщении #1197629 писал(а):
в момент изучения таблицы интегралов, студентам просто необходимо сказать, что "вот это функция ошибок, вот это эллиптический интеграл, а вот это - функция Бесселя, не пугайтесь".

Сказать можно, только они не услышат. Как и Вы не слышите, что Вам говорят:

Munin в сообщении #1197629 писал(а):
Someone в сообщении #1197599 писал(а):
Гарантированно не добавят, поскольку в момент изучения этой таблицы никаких "эллиптических интегралов или каких-нибудь ещё функций" не будет.

Вам кажется, что любая произнесённая фраза даёт некоторую новую информацию. Это наивно. Без предварительной мотивации можно говорить какие угодно слова -- и всё вхолостую. Про синус в момент изучения интегралов знают все, и знают, зачем этот синус нужен. Про ошибки и даже про эллипсы не знает никто; естественно, всё это будет пропущено мимо ушей.

А вот противоположный (отчасти) случай:

Munin в сообщении #1197629 писал(а):
ex-math в сообщении #1197591 писал(а):
А уж гамма-функцию так вообще знают и любят все.
Одна из наименее нужных функций. В теории струн только и нужна.

Если не считать того, что гамма-функция встречается в 90 эдак процентах формул, существующих в мире. Вы напрасно думаете, что любимый Вами Бессель сочинял свои функции только ради теории струн. (ну, что именно он создавал эту теорию -- можете считать, если хотите...)

То, что к таблице интегралов гамма-функция отношения всё-таки тоже не может иметь -- вопрос другой.

 
 
 
 Re: Опять про элементарные функции
Сообщение07.03.2017, 10:23 
Поскольку существует вольфрам альфа и подобные софты, я считаю что дрючить студентов десятками-сотнями интегралов каждым методом -- тут по частям, тут подстановкой и т.п., потеря времени. Сами методы конечно преподавать надо, но вот эти "большие домашние задания" с под сотню интегралов -- лишнее. Когда вольфрам альфы не было, может это и было полезно но тоже на мой взгляд не особо.

Вот лично мой опыт такой. Уже после окончания ада со взятием интегралов, надо было что-то посчитать практически, я уже не помню что (но точно из электродинамики, с краевыми эффектами и всем таким), кажется коэффициент отражения если приставить срезанный коаксиальный кабель к поверхности (то ли влажность дерева хотели так мерить, то ли толщину краски нанесенной на металл). Ну не суть. В общем, никаких элементарных функций не вышло. Вышли бессели. Времена были примерно ДВК-2 и IBM PC XT, так что пришлось брать книжку Дьяконова и программировать на бейсике...

 
 
 
 Re: Опять про элементарные функции
Сообщение07.03.2017, 10:27 

(Оффтоп)

wrest в сообщении #1197778 писал(а):
Времена были примерно ДВК-2 и IBM PC XT, так что пришлось брать книжку Дьяконова и программировать на бейсике...

А зачем?... К этим временам уже вполне был себе паскаль, и если на ДВК ещё довольно медленный (он там интерпретировался), то на XT -- уже очень даже шустренький.

 
 
 
 Posted automatically
Сообщение07.03.2017, 10:32 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Вопросы преподавания»
Причина переноса: перестала соответствовать исходному разделу.

 
 
 
 Re: Опять про элементарные функции
Сообщение07.03.2017, 11:00 
ewert в сообщении #1197779 писал(а):
А зачем?... К этим временам уже вполне был себе паскаль

До турбо-паскаля (с турбо-вижен) тоже дело доходило на XT машинах, но на бейсике было как-то удобней, что ли.

ewert в сообщении #1197779 писал(а):
и если на ДВК ещё довольно медленный (он там интерпретировался)
Да нет, вполне себе компилировался. То ли орегон, то ли парагон в общем какой-то "-gon software", Паскаль->Макро11->исполняемый файл под RT-11 (.sav кажись).

 
 
 [ Сообщений: 159 ]  На страницу Пред.  1 ... 5, 6, 7, 8, 9, 10, 11  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group