2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 Re: Вопрос к геометрам.
Сообщение02.01.2016, 16:52 
Anton_Peplov в сообщении #1087563 писал(а):
LionKing в сообщении #1087435 писал(а):
Какие разделы геометрии вообще есть?


Про это была целая тема.
Я ни разу не специалист, но выскажу свое дурацкое мнение. Была когда-то геометрия, какой ее знали греки. Потом, начиная, наверное, с Декарта с его координатным методом, который заменил точки наборами чисел, а фигуры - уравнениями, ее обобщали в самые разные стороны. И к текущему моменту дообобщались до того, что трудно понять, какой раздел математики еще относится к геометрии, а какой уже нет.

И все-таки для меня этот факт тайны не составляет.))) Мне вообще-то было интересно узнать, на какие разделы делится геометрия на данный момент. Мне кажется, что то, что я перечислил - далеко не все... Хотя это просто мои догадки. А к тому, что вы сказали можно добавить еще теоретико-групповой подход к геометрии. Есть некое множество $X$. И есть некая группа $(G,\cdot)$, которая действует на множество $X$. Рассмотрим множество $2^X$. Пусть $A,B \in \ 2^X$ множества такие, что существует $g \in \mathbb{G}$ такой, что $gA=B$. В таком случае будем говорить, что множества $A,B$ эквивалентны относительно группы $(G,\cdot)$. Этот факт мы будем записывать так $A \equiv\ B$. Можно доказать, что построенное бинарное отношение - это отношение эквивалентности, которое разбивает булеан множества $X$ на непересекающиеся классы. Упорядоченную тройку $(G, X, 2^X)$ мы будем называть геометрией, для которой группа $(G,\cdot)$ - группа движений. Мы можем построить $F$ - некую сигма-алгебру множеств над $X$ так, чтобы выполнялось условие:
$(A \in \mathbb{F}) \Rightarrow (gA \in \mathbb{F})\quad\forall g \in \mathbb{G}$
На данной сигма-алгебре мы можем построить специальную меру $\mu$ такую, что:
$\mu(gA)=\mu(A)\quad\forall g \in \mathbb{G},\quad\forall A \in \mathbb{F}$
Эту меру мы будем называть левой мерой Хаара. Наличие меры Хаара в геометрии делает ее еще более интересной, но это уже совсем другая история.
Собственно это был теоретико-групповой подход к построению геометрии...
Однако никто так и не ответил на мой искомый вопрос. Какие разделы геометрии вообще есть на данный момент?

 
 
 
 Re: Вопрос к геометрам.
Сообщение02.01.2016, 19:00 
Anton_Peplov в сообщении #1087563 писал(а):
Про это была целая тема
.

Спасибо. Ж-ж-жесть. Серьезный такой объем...

 
 
 
 Re: Вопрос к геометрам.
Сообщение02.01.2016, 23:47 
Аватара пользователя
LionKing в сообщении #1087612 писал(а):
Спасибо. Ж-ж-жесть. Серьезный такой объем...

Судя по этому замечанию, ссылки, которые давал я, вы ещё не открывали. И судя по тому, что пишете выше, тоже (а то бы нашли там ответы на свои вопросы).

Ну и ладно. Каждый сам себе вредитель, других не надо.

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 00:30 
Аватара пользователя
LionKing в сообщении #1087592 писал(а):
Мне вообще-то было интересно узнать, на какие разделы делится геометрия на данный момент. Мне кажется, что то, что я перечислил - далеко не все...

А откуда берется уверенность, что есть такой математик, который точно назовет число капель воды в океане и число песчинок в пустыне все-все разделы современной геометрии, причем ровно по одному разу :shock:

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 10:59 
Аватара пользователя
LionKing в сообщении #1087338 писал(а):
Интересует серьезная геометрия с уклоном в алгебраическую геометрию.

А если взять стандартный университетский учебник по линейной алгебре и геометрии (допустим, Шафаревича и Ремизова)? Он вас удовлетворит? Некоторый уклон в алгебраическую геометрию там прослеживается. Допустим, много внимания уделяется проективным пространствам. В частности, рассматривается вопрос классификации квадрик в комплексном проективном пространстве. Или возьмите учебник по геометрии "вообще" (Прасолов и Тихомиров).

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 12:13 
LionKing
Так ведь тема необозримая совершенно.
Что касается литературы.
Можно тут http://math.stackexchange.com/questions ... 460#873460 посмотреть.
Можно у нас порыться на форуме, думаю, что-то да найдется. Например post363903.html#p363903, post773885.html#p773885, наверняка еще что-то есть. Вряд ли у Вас не работает поиск.

Вот такой вопрос и довольно подробный ответ http://math.stackexchange.com/questions ... 355#285355

Что касается всех возможных разделов математики, в которых присутствует слово "геометрия", то ничего, кроме Википедии, мне на эту тему не попадалось, но и того, что представлено там, имхо, на несколько жизней хватит. https://en.wikipedia.org/wiki/List_of_geometry_topics Тут есть не все направления, но более чем достаточно для того, чтобы при желании составить себе мало-мальский обзор.

Да, я не геометр ни разу. Чем смогла.

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 18:59 
Munin в сообщении #1087651 писал(а):
LionKing в сообщении #1087612 писал(а):
Спасибо. Ж-ж-жесть. Серьезный такой объем...

Судя по этому замечанию, ссылки, которые давал я, вы ещё не открывали. И судя по тому, что пишете выше, тоже (а то бы нашли там ответы на свои вопросы).

Ну и ладно. Каждый сам себе вредитель, других не надо.

Я, кстати, все ссылки просмотрел. Именно поэтому я и отметил: "Спасибо. Ж-ж-жесть. Серьезный такой объем." Я, кстати, просмотрел диаграмму, начерченную вами, и немножко прибалдел...

-- 03.01.2016, 19:04 --

LionKing в сообщении #1087592 писал(а):
И все-таки для меня этот факт тайны не составляет.))) Мне вообще-то было интересно узнать, на какие разделы делится геометрия на данный момент. Мне кажется, что то, что я перечислил - далеко не все... Хотя это просто мои догадки. А к тому, что вы сказали можно добавить еще теоретико-групповой подход к геометрии. Есть некое множество $X$. И есть некая группа $(G,\cdot)$, которая действует на множество $X$. Рассмотрим множество $2^X$. Пусть $A,B \in \ 2^X$ множества такие, что существует $g \in \mathbb{G}$ такой, что $gA=B$. В таком случае будем говорить, что множества $A,B$ эквивалентны относительно группы $(G,\cdot)$. Этот факт мы будем записывать так $A \equiv\ B$. Можно доказать, что построенное бинарное отношение - это отношение эквивалентности, которое разбивает булеан множества $X$ на непересекающиеся классы. Упорядоченную тройку $(G, X, 2^X)$ мы будем называть геометрией, для которой группа $(G,\cdot)$ - группа движений. Мы можем построить $F$ - некую сигма-алгебру множеств над $X$ так, чтобы выполнялось условие:
$(A \in \mathbb{F}) \Rightarrow (gA \in \mathbb{F})\quad\forall g \in \mathbb{G}$
На данной сигма-алгебре мы можем построить специальную меру $\mu$ такую, что:
$\mu(gA)=\mu(A)\quad\forall g \in \mathbb{G},\quad\forall A \in \mathbb{F}$
Эту меру мы будем называть левой мерой Хаара. Наличие меры Хаара в геометрии делает ее еще более интересной, но это уже совсем другая история.
Собственно это был теоретико-групповой подход к построению геометрии...
Однако никто так и не ответил на мой искомый вопрос. Какие разделы геометрии вообще есть на данный момент?

Этот комментарий, если не понял Munin, был адресован Anton Peplov-у. Это был ответ на его комментарий.

-- 03.01.2016, 19:08 --

LionKing в сообщении #1087592 писал(а):
Однако никто так и не ответил на мой искомый вопрос. Какие разделы геометрии вообще есть на данный момент?

Это было определенно лишнее предложение. Наверное набрал его на автомате...)))

-- 03.01.2016, 19:18 --

post1047789.html#p1047789
То, что надо...

-- 03.01.2016, 19:26 --

М-да... Надо внимательнее набирать, а то полная ерунда выходит с взаимопониманием... Кстати, я сейчас вышел на сайт Института Математики РАН имени В.А. Стеклова. Должен отметить, что теперь теоретической информации у меня в избытке. Скачал программу вступительного экзамена на направление "Геометрия и топология". Ну прямо то, что надо... Мне кажется, что этой программы мне хватит надолго......))) :D

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 19:26 
Аватара пользователя
LionKing в сообщении #1087802 писал(а):
Именно поэтому я и отметил: "Спасибо. Ж-ж-жесть. Серьезный такой объем."

Вы это написали в ответ на другую реплику. Так что, было видно, что вы назвали серьёзным объёмом нечто меньшее.

В общем, я прежде всего о
http://www.math-atlas.org/
(ссылка сгнила, архивировано, например, здесь: http://archive.is/yC0oj )

-- 03.01.2016 19:29:00 --

LionKing в сообщении #1087802 писал(а):
post1047789.html#p1047789
То, что надо...

Нет, это как раз примитивная ерунда по сравнению с тем, что давалось в других темах.

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 19:29 
И, кстати, алгебраическая геометрия - это "Математическая логика. Алгебра. Теория чисел." Вот так вот... :?:

-- 03.01.2016, 19:32 --

Munin в сообщении #1087809 писал(а):
Вы это написали в ответ на другую реплику.

Постараюсь изъяснятся яснее.

-- 03.01.2016, 19:33 --

Munin в сообщении #1087809 писал(а):
Нет, это как раз примитивная ерунда по сравнению с тем, что давалось в других темах.

Может и примитивная, но даже это нормальный такой трэш...

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 21:46 
Аватара пользователя
Не привык относиться к слову "трэш" как к комплименту...

 
 
 
 Re: Вопрос к геометрам.
Сообщение03.01.2016, 23:31 
Аватара пользователя

(Оффтоп)

Munin в сообщении #1087836 писал(а):
Не привык относиться к слову "трэш" как к комплименту...
Тогда лучше "рок-н-ролл":)

 
 
 
 Re: Вопрос к геометрам.
Сообщение04.01.2016, 15:07 
Munin в сообщении #1087836 писал(а):
Не привык относиться к слову "трэш" как к комплименту...

Заменим слово "трэш" на слово "хардкор"! :D

-- 04.01.2016, 15:09 --

Я не имел ввиду "мусор" (если что)...

 
 
 
 Re: Вопрос к геометрам.
Сообщение04.01.2016, 16:57 
Munin в сообщении #1087329 писал(а):
http://dxdy.ru/topic70672.html и topic71187.html - ссылки

А "синтетической геометрии" не бывает, это вас обманули.
Munin, Вы же, вроде, интересуетесь историей математики. Неужели не слышали про Якоба Штейнера?

 
 
 
 Re: Вопрос к геометрам.
Сообщение04.01.2016, 17:10 
VAL в сообщении #1088002 писал(а):
Munin в сообщении #1087329 писал(а):
http://dxdy.ru/topic70672.html и topic71187.html - ссылки

А "синтетической геометрии" не бывает, это вас обманули.
Munin, Вы же, вроде, интересуетесь историей математики. Неужели не слышали про Якоба Штейнера?

Дык бывает али не бывает??? :?:

 
 
 
 Re: Вопрос к геометрам.
Сообщение04.01.2016, 17:27 
LionKing в сообщении #1088005 писал(а):
Дык бывает али не бывает??? :?:

Судите сами.

 
 
 [ Сообщений: 35 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group