2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5  След.
 
 Задача о цилиндре.
Сообщение10.10.2015, 21:50 
Аватара пользователя
На цилиндре в пространстве задано n точек.
Вопрос :
1.Какое минимальное количество точек надо задать,чтобы из их координат можно было вычислить диаметр цилиндра?
2.Каков алгоритм вычисления диаметра цилиндра по координатам этих точек ?

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:01 
Аватара пользователя
Чтобы задать произвольный эллипс на плоскости, нужно 5 точек. Думаю, для однозначного задания цилиндра в пространстве нужно тоже 5. (Если все они в одной плоскости, то они задают эллиптическое сечение цилиндра этой плоскостью.)

Я бы при помощи МНК нашёл положение оси цилиндра.

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:06 
Аватара пользователя
Munin в сообщении #1061209 писал(а):
Чтобы задать произвольный эллипс на плоскости, нужно 5 точек. Думаю, для однозначного задания цилиндра в пространстве нужно тоже 5. (Если все они в одной плоскости, то они задают эллиптическое сечение цилиндра этой плоскостью.)

Я бы при помощи МНК нашёл положение оси цилиндра.

Откуда инфа про 5 точек ?
И что такое МНК ?

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:08 
Аватара пользователя
Про 5 точек легко догадаться самому, если начать с окружности, проведённой через произвольные 3 точки, а затем попытаться менять направление большой полуоси и эксцентриситет эллипса. Получатся ещё две степени свободы, которые надо зафиксировать.

МНК = метод наименьших квадратов.

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:37 
Munin в сообщении #1061209 писал(а):
Я бы при помощи МНК нашёл положение оси цилиндра.

А вот так не получится. Видимо, придётся искать прямую в пространстве, расстояния от которой до всех точек одинаковы.

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:45 
Аватара пользователя
Munin в сообщении #1061209 писал(а):
Думаю, для однозначного задания цилиндра в пространстве нужно тоже 5. (Если все они в одной плоскости, то они задают эллиптическое сечение цилиндра этой плоскостью.)

А разве, зная сечение, мы можем узнать и направление оси? По-моему, оно достаточно произвольно! То есть ось можно направить в любую сторону, проведя ее через центр эллипса.

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:49 
Аватара пользователя
PSP
Нелепая какая-то формулировка. Если в пространстве уже задано $n$ точек, то при чём здесь их минимально необходимое для задания цилиндра количество? Или сам цилиндр как-то задан? Тогда ответ будет $0$. Вы бы определились сперва, что задано, а что нужно найти.

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:56 
Аватара пользователя
Эллипс - кривая второго порядка.
Существует теорема :

Кривая второго порядка вполне определяется пятью своими точками(на плоскости),если никакие 4 из них не лежат на одной прямой.


И существует чёткий и простой алгоритм получения уравнения кривой второго порядка по этим 5 точкам.
(см.Корн "Справочник по математике" ,стр .69)

Вывод - задав 5 точек,как в теореме, мы получим либо эллипс,либо гиперболу,либо параболу.

Какие ограничения надо наложить на эти 5 точек ещё, кроме требования ( никакие 4 из них не лежат на одной прямой),чтобы гарантировано задать эллипс ?

И далее,если эллипс - сечение цилиндра плоскостью, то однозначно ли он определяет цилиндр ?

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 22:58 
Аватара пользователя
Утундрий
Вот и я тоже пыталась как-то переформулировать задачу понятнее... Пока не вышло... Видимо, имеется в виду что-то такое: "Сколько точек надо задать, чтобы можно было вычислить диаметр проведенного через них цилиндра"

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 23:01 
Аватара пользователя
Утундрий в сообщении #1061229 писал(а):
PSP
Нелепая какая-то формулировка. Если в пространстве уже задано $n$ точек, то при чём здесь их минимально необходимое для задания цилиндра количество? Или сам цилиндр как-то задан? Тогда ответ будет $0$. Вы бы определились сперва, что задано, а что нужно найти.


Ну,заменю постановку так :
1.Сколько нужно минимально задать в пространстве точек,чтобы они лежали на единственном цилиндре ?
2.Как по этим точкам вычислить диаметр цилиндра ?

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 23:02 
Аватара пользователя
Не хочется додумывать до конца... Но может взять общее уравнение поверхности второго порядка и учесть число ограничений, которые выделяют именно цилиндры?
Кстати, для эллипса есть требование общего положения точек (никакие 3 не лежат на одной прямой). Но вот какое аналогичное условие надо наложить в задаче?

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 23:05 
Кстати, цилиндры имеются в виду круговые или ещё какие-нибудь?

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 23:08 
Аватара пользователя
provincialka в сообщении #1061237 писал(а):
Не хочется додумывать до конца... Но может взять общее уравнение поверхности второго порядка и учесть число ограничений, которые выделяют именно цилиндры?
Кстати, для эллипса есть требование общего положения точек (никакие 3 не лежат на одной прямой). Но вот какое аналогичное условие надо наложить в задаче?


Откуда взято выделенное ?
И если считать, что из 5 точек никакие 3 не лежат на одной прямой, то отсюда следует, что тогда и никакие 4 не лежат на одной прямой ? Так ?

-- Сб окт 10, 2015 23:08:45 --

Sender в сообщении #1061238 писал(а):
Кстати, цилиндры имеются в виду круговые или ещё какие-нибудь?

Да,только круговые.

-- Сб окт 10, 2015 23:21:02 --

Впрочем,задачу можно решить так :
1.3 точки однозначно определяют окружность.
2.Окружность определяет однозначно цилиндр,коий через него проходит.
Правильно ?
Отсюда уже и диаметр и т.п..

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 23:22 
Munin в сообщении #1061209 писал(а):
Думаю, для однозначного задания цилиндра в пространстве нужно тоже 5.

По моим грубым прикидкам для однозначного определения оси получается 6 точек общего положения. Прямая в 3-хмерном пространстве задаётся двумя векторами минус одна степень свободы, т.е. 5 параметров. Для получения 5 уравнений требуется попарно приравнять 6 расстояний от этих точек до оси.

 
 
 
 Re: Задача о цилиндре.
Сообщение10.10.2015, 23:31 
Sender в сообщении #1061243 писал(а):
Прямая в 3-хмерном пространстве задаётся двумя векторами минус одна степень свободы, т.е. 5 параметров.

4 параметра должно быть. Если уравнение $\mathbf{r}=\mathbf{r_0} + k\mathbf{n}$, где $|\mathbf{n}|=1$ - это пять степеней свободы, минус одна степень, потому что начальная точка может ездить вдоль прямой.

 
 
 [ Сообщений: 67 ]  На страницу 1, 2, 3, 4, 5  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group