2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 13:49 
Аватара пользователя
Мыслей вслух тут много можно набросать, например, что цилиндриса - кривая 4-го порядка. (А чо? Название как название. В данной задаче такое понятие удобно, так что давайте назовём эту вещь  трамваем  цилиндрисой.)

Я ещё хотел заметить, насколько естественна вообще исходная постановка задачи. Произвольная квадратичная поверхность была бы, наверное, более естественной. Цилиндр отличается от неё двумя ограничениями на собственные значения квадратичной формы (главной части уравнения поверхности): $\lambda_1=\lambda_2,\quad\lambda_3=0.$ Кроме того, одним неравенством: $\lambda_1=\lambda_2>0$ (удобней накладывать его на свободный член, $R^2>0$). В общем, задача выглядит не слишком естественной, и это, кажется, главная причина, по которой решение:


-- 12.10.2015 13:57:07 --

Munin в сообщении #1061686 писал(а):
удобней накладывать его на свободный член, $R^2>0$

Что-то я засомневался. На плоскости $(\lambda_1,\lambda_2)$ понятно, что эллиптические цилиндры находятся в I квадранте (без границы). Два других квадранта - гиперболические цилиндры. Последний квадрант - "мнимые цилиндры". Граница между квадрантами - пара плоскостей, либо "пара мнимых плоскостей".

 
 
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 17:30 
INGELRII в сообщении #1061620 писал(а):
Смотрите: уравнение окружности $(x - x_0)^2 + (y - y_0)^2 = R^2$, и что получится, когда мы туда подставим одну точку с координатами $(x_1, y_1)$? Получится ровно одно уравнение относительно параметров $x_0, y_0, R$. Ну и сколько ж нужно уравнений для однозначного нахождения трех параметров? Три. Значит, и точки три.

Вы похоже не поняли одно из суждений топик-стартера. Смотрите: вторая точка будет не произвольной, а строго противоположной на окружности, тогда одной точкой убиваем сразу двух зайцев - радиус равен половине расстояния между двумя точками, а центр находится посередине между точками.
В пространстве для окружности нужно задать минимум три точки, этой информацией можно еще что-нибудь дополнительно закодировать... :D

 
 
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 18:20 
Аватара пользователя
Munin в сообщении #1061686 писал(а):
Я ещё хотел заметить, насколько естественна вообще исходная постановка задачи. Произвольная квадратичная поверхность была бы, наверное, более естественной.
И ещё более громоздкой. У цилиндрисы всего три параметра именно вследствие круговой симметрии.

 
 
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 19:06 
Аватара пользователя
Утундрий
Простите, а что вы считаете более громоздким: квадратичные формы в 3-мерном или в 4-мерном пространстве? Чтобы просто понять, что такое "громоздкое" в вашем понимании.

 
 
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 19:13 
Аватара пользователя
Я имел в виду тот очевидный факт, что различных взаимных расположений двух эллиптических цилиндров несколько больше, чем аналогичных расположений двух круговых. Симметрия - наш друг, всегда нужно стараться использовать симметрию.

 
 
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 20:07 
Аватара пользователя
Даже если так, внезапно они могут стать более однообразными.

 
 
 
 Re: Задача о цилиндре.
Сообщение12.10.2015, 20:55 
Мне почему-то показалось, что ТС в завуалированной форме захотелось задать любой круговой цилиндр в пространстве. Если так, для этого неудобно брать все параметры в виде точек, а удобно сделать как у INGELRII.

 
 
 [ Сообщений: 67 ]  На страницу Пред.  1, 2, 3, 4, 5


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group