2. какие-то аксиомы надо помнить, а ещё свойства, а ещё считать в уме — а понимать что надо? википедии хватит без всяких пониманий.
Эта критика принимается.
3. три определения, причем совершенно неясен смысл их названий и так же неясно наличие/отсутсвие связи между ними; обычно если уж одно и то же слово употребляется в названии термина, то прослеживается связь между понятиями, опять же неясно, что именно нужно понимать, а к чему привести пример
Интуитивный смысл понятия "локальности" - важно, как функция ведет себя в точке или в малой окрестности точки, и чихать на то, как она себя ведет во всей остальной области определения. Выполнение свойства для всей области определения складывается из его выполнения во всех точках (в каком-то смысле можно сказать, что свойство "аддитивно"). Это так для непрерывности и дифференцируемости, но совершенно не так для интегрируемости и ограниченности (последние два свойства вообще не определены в точке, а если определить их выполнение в точке как выполнение на одноточечном множестве, то они будут выполняться в любой точке, но из этого не последует их выполнение на множестве, состоящем из этих точек). Мне различие между "локальными" и "нелокальными" свойствами представляется глубоким и важным именно в смысле понимания.
"Железная локальность" демонстрирует как будто следующий шаг. Дело в том, что интуитивно кажется (мне, по крайней мере), что если свойство выполняется в точке, то оно выполняется и в достаточно малой окрестности этой точки. А это не так ни для непрерывности, ни для дифференцируемости. И если человек это знает, он
понимает природу непрерывности и дифференцируемости лучше, чем если он этого не знает.
"Ну вообще локальные" свойства - иллюстрация противоположной иллюзии. Можно решить, что раз уж какая-нибудь непрерывность такая локальная, то непрерывность функции в точке
и зависит только от значения функции в точке
. Это означало бы, что если
непрерывна в т.
и
, то и
непрерывна в т.
. Но это очевидно не так, и контрпример легко построить. "Ну вообще локальное" свойство является по сути свойством
числа (значения функции в данной точке), а не функции. В то время как непрерывность и дифференцируемость в точке являются все-таки свойством
функции, и их выполнение/невыполнение в точке
зависит от поведения функции в целом континууме других точек. То есть получается так: непрерывность функции в точке
еще не гарантирует непрерывности ее ни в какой окрестности этой точки (свойство железно локальное!), но
зависит от поведения функции в этой окрестности (свойство не "ну вообще локальное"). Это тонкая грань, и ее
понимание, по-моему, связано с пониманием матанализа вообще.
7. опять же: что нужно понимать? я встречал людей, которые просто помнят "ну там рациональные, там значит
, а если нет, то там
"; на вопрос "где там" и "что именно
" получаешь молчание — задачка не позволяет оценить какое-то понимание, это просто знание/незнание факта
.
А я встречал много-много людей, которые в ответ на этот вопрос хлопают глазами. Конечно, пример с рациональными/иррациональными числами достаточно истрепан, и встречаются люди, которые его видели и запомнили. Но, как Вы сами правильно заметили, чтобы отсеять таких мнемонистов, достаточно задать вопрос "почему?".
1. 4. 5. это стандартные задачи из соответствующих курсов, не знаю, насколько они способствуют "пониманию"
Да, они стандартные. Но пониманию они, на мой взгляд, очень даже способствуют. А если на Ваш не способствуют, значит, мы с Вами по-разному понимаем слово "понимание". И давайте не будем пытаться его определить, это не удалось философам за две с половиной тысячи лет работы, и у нас тоже вряд ли получится.
вот 6. мне нравится
Я рад.
Это не процесс решения, это запись ответа. В процессе решения люди так не думают.
В процессе решения люди думают так: "Доказать не получается, попробую-ка я опровергнуть. Поищем контрпримеры. Ясно, что если одно из слагаемых в левой части уже больше правой, то и от возведения в квадрат ничего не изменится. Поищем-ка примеры, когда оба слагаемых в левой части сами по себе меньше правой, но в сумме больше или равны. О! Нашел!".
Вы были столь любезны, что выполнили подробный критический разбор предложенных задач. Было бы еще более очаровательно, если бы Вы взамен предложили свои задачи.
-- 02.10.2015, 20:00 --Я не критиковал ваши задачи, я всего лишь отозвался о своих способностях.
Не думаю (и вряд ли когда-нибудь начну), что мои способности больше Ваших. Это слишком уж экстравагантное предположение.
Скорее всего, тут дело в ретроспективном искажении: задача, которую уже решил, кажется легче, чем есть на самом деле.