2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение22.04.2015, 10:49 
1. Дан ряд распределения дискретной случайной величины $X$. Найти $p$ и вероятность того, что $1\le X<3$
Изображение

$p=1-0,4-0,4$

$P(1\le X<3)=0$ (вроде как очевидно, нужно ли как-то обосновывать?)

2. Дана функция распределения непрерывной случайной величины. Она задается следующим образом:

$$F(x)=\begin{cases}
0,&\text{если $x\le -1$;}\\
x-1,&\text{если $-1<x\le 0$;}\\
c,&\text{если $x>0$.}
\end{cases}$$

Найти среднее значение случайной величины и $c$. На первый взгляд

$M(X)=\displaystyle\int_{-1}^0xdx=-0,5$

$c=1$ (вроде очевидно)

Но, мне кажется, что все-таки опечатка в задаче, так как ФР не может быть отрицательной.
Скорее всего, имелось ввиду

$$F(x)=\begin{cases}
0,&\text{если $x\le -1$;}\\
x+1,&\text{если $-1<x\le 0$;}\\
c,&\text{если $x>0$.}
\end{cases}$$

В таком случае все нормально. $c=1$, но как доказать, что $c=1$?
Можно сказать, что в силу непрерывности ФР и все?
$M(X)=\displaystyle\int_{-1}^0xdx=-0,5$

3.
Дана плотность распределения нормально распред. Случайной величины $X$. Найти дисперсию, матожидание, записать правило трех сигм.
$f(x)=\dfrac{1}{\sqrt{2\pi}}\cdot e^{-\frac{(x-2)^2}{2}}$

$M(X)=2$

$D(X)=1$

Правило трех сигм: $1<x<2$. Верно? Или тут что-то еще нужно про вероятность написать

 
 
 
 Posted automatically
Сообщение22.04.2015, 17:05 
Аватара пользователя
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Причина переноса: формулы не оформлены $\TeX$ом

number_one
Наберите все формулы и термы $\TeX$ом.
Инструкции по оформлению формул здесь или здесь (или в этом видеоролике).
См. также тему Что такое карантин, и что нужно делать, чтобы там оказаться.
После исправлений сообщите в теме Сообщение в карантине исправлено, и тогда тема будет возвращена.

 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»
Возвращено

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение22.04.2015, 17:46 
Там в правиле трех сигм все-таки $1<x<3$

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение22.04.2015, 20:35 
Аватара пользователя
number_one в сообщении #1006834 писал(а):
Там в правиле трех сигм все-таки $1<x<3$

И где тут три сигмы? Одну вижу.

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение22.04.2015, 21:15 
мат-ламер в сообщении #1006895 писал(а):
number_one в сообщении #1006834 писал(а):
Там в правиле трех сигм все-таки $1<x<3$

И где тут три сигмы? Одну вижу.


Спасибо!

$-1<x<5$

А как с остальным?

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение22.04.2015, 21:30 
Аватара пользователя
number_one в сообщении #1006710 писал(а):
В таком случае все нормально. $c=1$, но как доказать, что $c=1$?
Можно сказать, что в силу непрерывности ФР и все?

И всё.

-- Ср апр 22, 2015 22:33:43 --

Ваш подход к первой задаче я не понял.

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение23.04.2015, 00:04 
мат-ламер в сообщении #1006912 писал(а):
number_one в сообщении #1006710 писал(а):
В таком случае все нормально. $c=1$, но как доказать, что $c=1$?
Можно сказать, что в силу непрерывности ФР и все?

И всё.

-- Ср апр 22, 2015 22:33:43 --

Ваш подход к первой задаче я не понял.


В заданный полуинтервал не попадает ни одно из значений дискретной случайной величины.

А про опечатку был прав я?

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение23.04.2015, 00:19 
С первой задачей всё хорошо, но если припишете к ответу вот эту заметку о непопадании значений в интервал — думаю, вообще кто угодно доволен будет. Ну и дописать для порядка к $p=1-0{,}4-0{,}4 \mathrel{\color{blue}{= 0{,}2}}$.

 
 
 
 Re: 3 короткие задачи по теории вероятностей. Можете проверить?)
Сообщение23.04.2015, 00:45 
Спасибо!

 
 
 [ Сообщений: 9 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group