Для того, чтобы говорить о непрерывности отображений топология (на множестве-образе и множестве-прообразе) необходима и достаточна. Получается, что всякое метрическое пространство и топологическим тоже является, но не всякое топологическое пространство метризуемо.
Имеем отображение
, оно непрерывно в точке
, если существует для каждого
такое
, что
. В каком месте мы завели топологию и почему она нам необходима, чтобы констатировать непрерывность этого отображения?
Понятие топологического пространства формализует такие понятия как "близость точек", "непрерывность отображения" и т.п.. Есть много важных топлогических пространств, которые не являются метрическими. Например, в теории обобщенных функций рассматривается простраанство
-- пространство основных или пробных функций. Естественная для этого пространства топология неметризуема.
А каким образом задается на пространстве основных функций топология, если вкратце? Извиняюсь за этот вопрос, понимаю, что можно покопаться в литературе и найти, но это было бы долго, потому что не ориентируюсь в литературе по функционалке, потому что не занимался ей дальше самых основ
Если Вы спрашиваете "Как исторически пришли к понятию топологии?", то мне кажется, что при попытке сказать, что такое непрерывность в том случае, когда нет никаких расстояний (метрик). Но это только лишь мои соображения, как было на самом деле пусть скажет кто-то более компетентный в истории науки.
Именно, меня интересуют как пришли к этому понятию. Как пример дал свое понимание того, как пришли к метрическому пространству