2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Общая топология. Для чего?
Сообщение27.06.2015, 18:57 
Вопрос не технический. Для чего появилась потребность в понятии топологии? Часто говорят "топологическое пространство это обобщение понятия метрическое пространство". Где именно обобщение? Обоснованность заведения понятяи "метрическое пространство" для меня понятно - для обобщения понятия расстояния между точками для любых "типов" расстояний и любых множеств, а не только "стандартного" Евклидова пространства. Так для чего же топология?

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:05 
Аватара пользователя
Потому что метрика в случае метрического пространства -- это тоже некоторый объект, не являющийся частью самого исходного пространства, что-то "инородное", если угодно. И при построении некоторых теорий для большей общности хочется от него отказаться. Или наоборот, в некоторых конкретных случах (аффинные пространства допустим) мы в принципе не подразумеваем наличия метрики и должны изучать свойства рассматриваемого пространства и его элементов без нее.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:09 
Это понятно, это общий принцип. Мне интересен сам процесс перехода к этому обобщению. Никаких ещё теорий, построенных на этих обобщениях, нет. Мы только догадываемся, что они могут быть и обобщение нам пригодится. Так вот в чем это обобщение? Если это обобщение, то должен быть плавный переход, где то, что мы обобщаем - частный случай. Ну и целесообразность - в тот момент, когда мы решили обобщить

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:12 
Аватара пользователя
greg2 в сообщении #1031616 писал(а):
Так вот в чем это обобщение? Если это обобщение, то должен быть плавный переход, где то, что мы обобщаем - частный случай.

greg2, а дайте-ка определения:
1. Топологического пространства
2. Окрестности точки в метрическом пространстве.
3. Окрестности точки в топологическом пространстве.

Вот Вы сразу и увидите и переход, и частный случай.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:13 
Топология нужна для введения понятия непрерывности отображений. Метрика порождает топологию, согласованную с ней, но не наоборот. Для того, чтобы говорить о непрерывности отображений топология (на множестве-образе и множестве-прообразе) необходима и достаточна. Получается, что всякое метрическое пространство и топологическим тоже является, но не всякое топологическое пространство метризуемо. В этом смысле имеется прямое обобщение, когда нам не нужно уметь мерять расстояния, но хочется иметь возможность проверять отображения на непрерывность.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:13 
Понятие топологического пространства формализует такие понятия как "близость точек", "непрерывность отображения" и т.п.. Есть много важных топлогических пространств, которые не являются метрическими. Например, в теории обобщенных функций рассматривается простраанство $\mathcal{D}(\mathbb{R})$ -- пространство основных или пробных функций. Естественная для этого пространства топология неметризуема.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:14 
Аватара пользователя
Если Вы спрашиваете "Как исторически пришли к понятию топологии?", то мне кажется, что при попытке сказать, что такое непрерывность в том случае, когда нет никаких расстояний (метрик). Но это только лишь мои соображения, как было на самом деле пусть скажет кто-то более компетентный в истории науки.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:16 
Аватара пользователя
Oleg Zubelevich в сообщении #1031619 писал(а):
Понятие топологического пространства формализует такие понятия как "близость точек"

Близость-то как? Сходимость - понятно как, а близость?

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:26 
VanD в сообщении #1031618 писал(а):
Для того, чтобы говорить о непрерывности отображений топология (на множестве-образе и множестве-прообразе) необходима и достаточна. Получается, что всякое метрическое пространство и топологическим тоже является, но не всякое топологическое пространство метризуемо.


Имеем отображение $f : (P, \rho) \rightarrow (Q, \sigma)$, оно непрерывно в точке $a$, если существует для каждого $\delta$ такое $\varepsilon$, что $\rho(x,y) < \varepsilon \Rightarrow \sigma(f(x),f(y)) < \delta$. В каком месте мы завели топологию и почему она нам необходима, чтобы констатировать непрерывность этого отображения?

Oleg Zubelevich в сообщении #1031619 писал(а):
Понятие топологического пространства формализует такие понятия как "близость точек", "непрерывность отображения" и т.п.. Есть много важных топлогических пространств, которые не являются метрическими. Например, в теории обобщенных функций рассматривается простраанство $\mathcal{D}(\mathbb{R})$ -- пространство основных или пробных функций. Естественная для этого пространства топология неметризуема.


А каким образом задается на пространстве основных функций топология, если вкратце? Извиняюсь за этот вопрос, понимаю, что можно покопаться в литературе и найти, но это было бы долго, потому что не ориентируюсь в литературе по функционалке, потому что не занимался ей дальше самых основ

Hasek в сообщении #1031620 писал(а):
Если Вы спрашиваете "Как исторически пришли к понятию топологии?", то мне кажется, что при попытке сказать, что такое непрерывность в том случае, когда нет никаких расстояний (метрик). Но это только лишь мои соображения, как было на самом деле пусть скажет кто-то более компетентный в истории науки.

Именно, меня интересуют как пришли к этому понятию. Как пример дал свое понимание того, как пришли к метрическому пространству

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:36 
greg2 в сообщении #1031623 писал(а):
А каким образом задается на пространстве основных функций топология, если вкратце?


Пространство основных функций $\mathcal D(\mathbb{R})$ является объединением пространств $\mathcal D_K(\mathbb{R})$ -- это пространства гладких функций на $\mathbb{R}$ у которых носители (и носители всех производных) принадлежат компакту $K$.
Топология в пространстве $\mathcal{D}_K(\mathbb{R})$ задается полунормами $\|f\|_{K,i}=\sup_{x\in K}|f^{(i)}(x)|,\quad i=0,1,2...$.
Топология в $\mathcal D(\mathbb{R})$ это сильнейшая топлогия при которой вложения $\mathcal{D}_K(\mathbb{R})\to \mathcal{D}(\mathbb{R})$ непрерывны для каждого компакта $K$.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:36 
Аватара пользователя
greg2 в сообщении #1031623 писал(а):
Именно, меня интересуют как пришли к этому понятию. Как пример дал свое понимание того, как пришли к метрическому пространству

Как точно пришли - надо книги по истории науки смотреть, но если предполагать, то я бы тоже предположил, что в попытках расширить понятия сходимости/непрерывности на пространства без метрики.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 19:57 
Аватара пользователя
greg2
Я бы Вам посоветовал прочитать несколько страниц книги Гротендика "Урожаи и посевы" (я говорю о п.9 в разделе "Прогулка по творческому пути"). Он условно (традиционно) выделяет в предмете математического рассуждения три аспекта: число, размер и форму. А потом коротко и интересно поясняет, как в различных направлениях математики сочетаются эти аспекты. Мне это описание понравилось и сильно прояснило понимание некоторых вопросов, которые и без того ранее казались очевидными. (Понятно, что топологии там уделено основное внимание.)

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 20:29 
greg2 в сообщении #1031623 писал(а):
Имеем отображение $f : (P, \rho) \rightarrow (Q, \sigma)$, оно непрерывно в точке $a$, если существует для каждого $\delta$ такое $\varepsilon$, что $\rho(x,y) < \varepsilon \Rightarrow \sigma(f(x),f(y)) < \delta$. В каком месте мы завели топологию и почему она нам необходима, чтобы констатировать непрерывность этого отображения?

Для метрических пространств отображение непрерывно относительно топологий, в которых открытые множества определяются как всевозможные окрестности точек в виде $U(x_0) = \{x \in P\ | \ \rho(x, x_0) < \varepsilon\}$ и их произвольные объединения, да ещё пустое множество (на $Q$ - аналогично). Может Вы её и не заводили, но определение непрерывности относительно метрик -- в точности "если прообраз открытого открыт" в описанных для соответствующих метрик топологиях -- не зависимо от того, считали ли Вы, что они там есть или нет.

Upd
Хотя Ваше определение не непрерывности, а равномерной непрерывности на $P$, так как точка $a$ таинственно пропадает из рассмотрения и "непрерывность" отображения у Вас есть или на всём $P$ или нигде. Тут нельзя так, в духе назовём отображение непрерывным если ...
Это уже будет совсем другая история/терминология.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 21:46 
Аватара пользователя
Если говорить про историю, то термин "топологическое пространство" появляется у Хаусдорфа в "Grundzüge der Mengenlehre". Определение там дается в терминах окрестностей точек и включает аксиому отделимости T2. Это вполне естественное обобщения понятия окрестности в метрическом пространстве. В современных терминах такие пространства называются хаусдорфовыми.

Более общее понятие топологического пространства идет из работ Куратовского - он исследовал оператор замыкания, и соответственно у него рассматриваются множества, на которых задан оператор со свойствами такими же, как оператор замыкания в обычных евклидовых пространствах. Задание топологии с помощью оператора замыкания эквивалентно заданию с помощью открытых множеств.

 
 
 
 Re: Общая топология. Для чего?
Сообщение27.06.2015, 22:07 
Аватара пользователя
Xaositect в сообщении #1031663 писал(а):
Если говорить про историю, то термин "топологическое пространство" появляется у Хаусдорфа в "Grundzüge der Mengenlehre".

А что он там исследовал, в этой работе? Он топологическое пространство ввел, чтобы какую-то задачу решить, или просто по принципу "смотрите, какая классная штука!"?
Тот же вопрос про Куратовского и оператор замыкания.

 
 
 [ Сообщений: 30 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group