2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3  След.
 
 пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 13:14 
I. подскажите пожалуйста, правильно ли в моей голове сформировалась картинка:
1) между пространством и ему сопряжённым в общем случае нет гомоморфизма
Если мы введём метрику то
2) между пространством и ему сопряжённым существует гомоморфизм
В частном случае евклидового пространства:
3) между пространством и ему сопряжённым существует изоморфизм (то есть объекты из пространства и сопряжённого пространства можно не различать)
В ещё более частном случае евклидового пространства с ортогональным базисом
4) между пространством и ему сопряжённым существует изоморфизм и верхние и нижние индексы можно не различать

II. Кроме того, у меня такое чувство, что книжки по которым я изучал тензора кое-что не договаривают. А именно, начинают почти сразу исследовать метрические пространства, тем самым не различая $E$ и $E^*$. А так хочется понять, как будет ковектор разлагаться по базису в случае неметрического пространства. Я понимаю, что он функционал, но всё же в чём будет принципиальное отличие такой картинки скажем от картинки для евклидового пространства (здесь вектор и ковектор отождествлены - и обозначены буквой А):
Изображение


III. А есть ли практическая (физическая) польза от неметрических пространств?

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 13:19 
illuminates в сообщении #1023618 писал(а):
А так хочется понять, как будет ковектор разлагаться по базису в случае неметрического пространства.

А как он будет "разлагаться" в случае метрического пространства (учитывая, что в нём векторов вообще нет, вообще говоря)?...

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 13:43 
Не уверен, что я понял, о чём речь, но в метрических пространствах изоморфизм таки есть. Речь ( же о линейных функциях на векторном пространстве, нет? Линейная функция на метрическом пространстве есть скалярное произведение на некий вектор. Не соображу самого простого способа нахождения, но если перейти к ортонормированному базису, то коэффициенты функции перейдут в компоненты этого вектора.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 13:49 
iifat в сообщении #1023628 писал(а):
Речь ( же о линейных функциях на векторном пространстве, нет?

Формально говоря -- нет. Если в векторном пространстве есть метрика, то оно -- нормированное, иначе эта метрика бесполезна. Короче, просто путаница в терминологии.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 14:43 
Аватара пользователя
illuminates в сообщении #1023618 писал(а):
I. подскажите пожалуйста, правильно ли в моей голове сформировалась картинка:
1) между пространством и ему сопряжённым в общем случае нет гомоморфизма

В конечномерном случае есть (и даже изоморфизм). (Впрочем, я не над всякими полями знаю.)

Беда другая: он не единственный. То есть, можно взять один, а можно другой, и разницы не будет. Не за что зацепиться. Выбрав метрику (= скалярное произведение), вы этот изоморфизм фиксируете.

illuminates в сообщении #1023618 писал(а):
II. Кроме того, у меня такое чувство, что книжки по которым я изучал тензора кое-что не договаривают. А именно, начинают почти сразу исследовать метрические пространства, тем самым не различая $E$ и $E^*$. А так хочется понять, как будет ковектор разлагаться по базису в случае неметрического пространства.

Смотрите две книжки:
1. Анго. Математика для электро- и радиоинженеров.
2. Burke W.L. Div, grad, curl are dead.

Вкратце:
- можно нарисовать "сопряжённые векторы" в виде отрезков со стрелочками, в случае метрического пространства (= со скалярным произведением);
- можно рисовать не отрезки со стрелочками, а другие графические обозначения. В них тоже можно проводить алгебраические вычисления, и в частности, раскладывать ковектор по базису ковекторов.

-- 05.06.2015 14:44:03 --

ewert в сообщении #1023630 писал(а):
Короче, просто путаница в терминологии.

Которую изящно привносите вы.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 17:03 
Аватара пользователя
illuminates в сообщении #1023618 писал(а):
В частном случае евклидового пространства:
3) между пространством и ему сопряжённым существует изоморфизм (то есть объекты из пространства и сопряжённого пространства можно не различать)
Независимо от наличия изоморфизма всё же лучше различать. В частности, ковектор (градиент скаляра) при изменении масштаба координат преобразуется совсем не так, как вектор (направленный отрезок). Об этом лучше не забывать.

illuminates в сообщении #1023618 писал(а):
В ещё более частном случае евклидового пространства с ортогональным базисом
4) между пространством и ему сопряжённым существует изоморфизм и верхние и нижние индексы можно не различать
Если базис гарантированно ортонормированный, то верхние и нижние индексы можно не различать.

illuminates в сообщении #1023618 писал(а):
А так хочется понять, как будет ковектор разлагаться по базису в случае неметрического пространства
Хотелось бы понять, что именно Вам бы хотелось понять. Самый общий ответ заключается в том, что ковектор разлагается по базису ковекторов точно так же, как вектор по базису векторов, т.е. "посредством нахождения коэффициентов линейной комбинации". Если же Вас интересуют частности, а именно, какова конкретная процедура нахождения оных коэффициентов линейной комбинации, то ответ может быть таков: Коэффициенты разложения по базису являются скалярными произведениями разлагаемого ковектора на соответствующие векторы сопряжённого базиса. Базис $\chi^i_{(\mu)}$ является сопряжённым к базису $\xi^{(\nu)}_j$ тогда и только тогда, когда $\chi^k_{(\mu)} \xi^{(\nu)}_k = \delta^{(\nu)}_{(\mu)}$. Существование метрики здесь нигде не предполагается.

illuminates в сообщении #1023618 писал(а):
А есть ли практическая (физическая) польза от неметрических пространств?
Практическая польза заключается в расширении физического кругозора: Человек начинает понимать, что метрическое пространство -- не единственная физическая возможность. Например, может оказаться так, что эталонный метр при переносе по замкнутому контуру изменяется. В таком случае с помощью данного эталона не удастся определить метрику пространства.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 17:47 
Аватара пользователя
illuminates в сообщении #1023618 писал(а):
III. А есть ли практическая (физическая) польза от неметрических пространств?

Ну например, можно вспомнить из школьной физики пространство состояний идеального газа, отображаемое на диаграммах $P\text{-}V,P\text{-}T,V\text{-}T.$ Вот оно - неметрическое. (Более того, перечисленные сетки координат ещё и криволинейны по отношению друг к другу...)

Можно рассмотреть пространство состояний (фазовое пространство) механической частицы или системы частиц: там кроме каждой пространственной координаты $x_i,$ будет ещё и скорость (или импульс) вдоль этой пространственной оси: $v_i$ или $p_i\quad(i=1\ldots 3N).$ Это неметрическое пространство.

Или даже без пространства состояний. Просто пространство положений (конфигурационное пространство) твёрдого тела. Оно шестимерное: положение тела задаётся положением одной какой-то точки ($x,y,z$) и тремя углами поворота твёрдого тела относительно этой точки ($\varphi,\theta,\psi$). Это опять будет неметрическое пространство.

Есть и более сложные и абстрактные примеры. Например, можно рассмотреть пространства функций. И собрать электрическую цепь, и рассмотреть электрические колебания в этой цепи, и заметить, что в пространстве функций эти колебания образуют, скажем, некоторую гиперплоскость. Здесь тоже никакой физической метрики сразу не выдумывается (хотя её можно и придумать).

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 19:24 
epros в сообщении #1023681 писал(а):
Независимо от наличия изоморфизма всё же лучше различать. В частности, ковектор (градиент скаляра) при изменении масштаба координат преобразуется совсем не так, как вектор (направленный отрезок). Об этом лучше не забывать.

Я имел ввиду "не различать" в смысле геометрических объектов, то есть скажем $x=x^*$, где $x$-вектор, $x^*$ - ковектор. Компоненты этих штук конечно различаются законами преобразований.

epros в сообщении #1023681 писал(а):
Хотелось бы понять, что именно Вам бы хотелось понять.

Мне бы хотелось в случае неметрических пространств нарисовать на листе вектор и ковектор и спроецировать их на базис и дуальный базис. Впрочем Munin дал наводку где копать.

epros в сообщении #1023681 писал(а):
Например, может оказаться так, что эталонный метр при переносе по замкнутому контуру изменяется. В таком случае с помощью данного эталона не удастся определить метрику пространства.

Вы говорите об абстрактной реализации этого в иной Вселенной или это существует в нашем мире?

ewert в сообщении #1023621 писал(а):
А как он будет "разлагаться" в случае метрического пространства (учитывая, что в нём векторов вообще нет, вообще говоря)?

Я речь веду о векторных пространствах. Последние отвечает на ваш вопрос?

Munin
Спасибо. Да я и сам вспомнил сейчас, что ОТО можно не вводить метрику (до какой-то стадии теории, а именно обычно вводят после уравнения геодезической), а работать в Аффинном многообразии с помощью символов Кристоффеля

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение05.06.2015, 20:29 
Аватара пользователя
illuminates в сообщении #1023618 писал(а):
А есть ли практическая (физическая) польза от неметрических пространств?

Например, пространство финитных функций, на котором обычно вводят обобщенные функции, не метрическое.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение06.06.2015, 11:29 
Аватара пользователя
illuminates в сообщении #1023728 писал(а):
Мне бы хотелось в случае неметрических пространств нарисовать на листе вектор и ковектор и спроецировать их на базис и дуальный базис. Впрочем Munin дал наводку где копать.
Я когда-то тут картинки рисовал: post714353.html#p714353, может, поможет.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение06.06.2015, 12:32 
Аватара пользователя
У Бёрке примерно такие же (да и неудивительно), но там чуть более разработано.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение06.06.2015, 13:32 
Аватара пользователя
illuminates в сообщении #1023728 писал(а):
Я имел ввиду "не различать" в смысле геометрических объектов, то есть скажем $x=x^*$, где $x$-вектор, $x^*$ - ковектор.
Я не понимаю что это значит. Вектор и ковектор различаются именно как "геометрические объекты". И как интерпретировать это равенство -- непонятно.

illuminates в сообщении #1023728 писал(а):
Мне бы хотелось в случае неметрических пространств нарисовать на листе вектор и ковектор и спроецировать их на базис и дуальный базис.
Xaositect предоставил рисунки. Однако я замечу, что лист -- это уже метрическое пространство, поэтому мне непонятно, каким образом с помощью рисунков на листе Вы надеетесь проиллюстрировать "неметричность" пространства.

illuminates в сообщении #1023728 писал(а):
Вы говорите об абстрактной реализации этого в иной Вселенной или это существует в нашем мире?
Отвечу вопросом: Вы уверены в том, что знаете обо всём, что существует "в нашем мире"?

illuminates в сообщении #1023728 писал(а):
Да я и сам вспомнил сейчас, что ОТО можно не вводить метрику (до какой-то стадии теории, а именно обычно вводят после уравнения геодезической), а работать в Аффинном многообразии с помощью символов Кристоффеля
Уравнения геодезических -- это ещё не ОТО. ОТО, собственно, заключена в уравнениях Эйнштейна. А попробуйте-ка записать их без метрики, только через связности. Нет, ОТО всё же существенно метрическая теория.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение06.06.2015, 15:20 
Аватара пользователя
ewert и epros
Вы всё-таки близнецы-братья! Оба пришли в тему, не чтобы помочь человеку и пояснить что-то, а чтобы только сильнее запутать. И попинать с высоты своего образования.

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение06.06.2015, 16:00 
Аватара пользователя
Munin в сообщении #1023977 писал(а):
пришли в тему, не чтобы помочь человеку и пояснить что-то, а чтобы только сильнее запутать
Почему же? Я именно пытаюсь помочь. Но трудно помочь, если непонятен смысл вопросов.

Например, мне непонятно, что значит "в случае неметрических пространств нарисовать на листе". На листе-то мы, конечно, нарисуем, но где же здесь будет "случай неметрических пространств"? А как разложить вектор по базису в неметрическом пространстве -- я выше как раз написал.

Или что означает $x = x^*$ (равенство вектора и сопряжённого к нему ковектора)? Да, в метрическом пространстве векторы и ковекторы составляют сопряжённые пары (кстати, в неметрическом пространстве это не так). Но в каком смысле мы должны считать их равными? И почему-то именно в случае евклидова пространства...

 
 
 
 Re: пространство и сопряжённое пространство, метрика
Сообщение06.06.2015, 16:50 
epros в сообщении #1023944 писал(а):
Однако я замечу, что лист -- это уже метрическое пространство, поэтому мне непонятно, каким образом с помощью рисунков на листе Вы надеетесь проиллюстрировать "неметричность" пространства.
Не позволять себе мерять расстояния и углы, и, соответственно, ортогонально проецировать и остальное. Цифорки на осях же легко понимаются без метрики, т. к. это просто скаляры, на которые умножается соответствующий оси вектор.

epros в сообщении #1023944 писал(а):
Вектор и ковектор различаются именно как "геометрические объекты". И как интерпретировать это равенство -- непонятно.
Можно теоретико-множественно (или со стороны другого основания математики, которым мы всё выразили, если вообще это делали, а не взяли просто свою маленькую теорию), хотя это будет, конечно, совершенно безотносительная к линейной алгебре ерунда, и все возможные равенства будут accidental. Например, как равенство $(x,x) = \{\{x\}\}$ — на него не надо обращать внимание и делать какие-то выводы о поведении упорядоченных пар или множеств (хотя в этом случае, не думаю, что можно сильно что-то напортить). Это написано, скорее, для illuminates. :-)

(И ещё в ту же кассу для большей ясности.)

Надо дополнить, что такие случайные совпадения можно отличить, заметив, что какие-то отождествления сделаны произвольно, как в случае определения пары по Куратовскому $(x,y)\equiv\{\{x\},\{x,y\}\}$; «сущность» же пары состоит в существовании (для каждого декартова произведения) двух функций — проекций $\pi_i\colon A_1\times A_2\to A_i$ таких, что $\pi_1(p) = \pi_1(q) \wedge \pi_2(p) = \pi_2(q) \Leftrightarrow p = q$. И если сменить произвольные отождествления, можно получить другие случайные совпадения вместо тех, что были раньше.

 
 
 [ Сообщений: 34 ]  На страницу 1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group