Когда мы раскладываем произвольный тензор на шаровую и девиаторную части, в качестве

мы используем первый инвариант, или сумму всех инвариантов?
Давайте разберемся, для чего делается такое разложение. Например, возьмём тензор деформации

. Деформация даже локально может быть сложной: в одной точке в разных направлениях одновременно могут быть и растяжения, и сжатия, и сдвиги. Для описания этого тензоры и выдуманы. Но у деформации есть важная скалярная характеристика, которая показывает: а в целом тело в точке растянуто или сжато? За это отвечает след тензора деформации, т.е. сумма его диагональных компонент

(Ваш первый инвариант). Если след положительный, тело в точке
в целом растянуто (а плотность уменьшается), если отрицательный — сжато (плотность увеличивается).
Так вот, любой тензор деформации можно разбить на сумму двух слагаемых. Первое слагаемое, шаровой тензор, описывает изотропную в точке деформацию (одинаковую по всем направлениям) и имеет то же растяжение-сжатие в целом (т.е. тот же след), что и исходный тензор. Второе слагаемое показывает отклонение тензора от описанной изотропной деформации, но его след уже равен нулю. Это девиатор.
Изотропной деформации соответствует тензор

, где

— некоторый скаляр. След этого тензора равен

. Чтобы этот след был таким же, как у «полноценного» тензора

, приравняем

, откуда

. Тогда шаровая часть деформации равна

.
Например, ни слова не известно про верхние и нижние индексы тензоров, хотя, если верить бегло просмотренной литературе по теме, это очень важная вещь.
Для криволинейных координат. Но и здесь прикладники отчаянно сопротивляются этой системе. Например, для криволинейных ортогональных координат они выдумали некоординатные ортонормированные базисы (которых в «нормальной теории» здесь уже не должно быть) и всё-таки обходятся одними нижними индексами.