Если бы Вы решили относительно переменной (

), то получилось бы уравнение не столь удачное:

Смогли бы Вы доказать, что оно не имеет действительных корней?
Технически да: взять производную, получается уравнение третьей степени. Найти корни (действительный в данном случае будет один), например, методом Кардано. Получаем минимум. Подставить в исходное уравнение и получить значение, большее ноля.
Но понятно, что выражения при таком методе получаются громоздкие.
К тому же задача из учебника 9 класса, им до производных еще далеко.
Поэтому я и сказал, что не такой путь подразумевается. К тому же, метод выражения через

получается проще.