2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Квантили в экспресс-оценках параметров распределений
Сообщение20.02.2015, 14:02 
Аватара пользователя
Помогите разобраться как они выводятся? Например, для выборочного среднего значения:

$\bar{x}=0.33(DZ_1+Q_2+DZ_9)$,

где $DZ_1, DZ_9$ - соответственно 10%-ная и 90%-ная выборочные квантили;

$Q_2$ - выборочная медиана.

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 04:27 
Аватара пользователя
Напишите правильно:
Цитата:
$\bar{x}\approx 0.33(DZ_1+Q_2+DZ_9)$,

и вопрос "как выводятся" отпадёт сам собой.

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 04:35 
Аватара пользователя
Не отпал.

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 06:34 
Аватара пользователя
Обьясните, почему центр распределения найденый по децилям берется с весом в два раза большим чем медиана?

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 16:18 
Аватара пользователя
Что такое "центр распределения"? Что значит "найденный по децилям"? Куда он "берётся"?

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 16:57 
Аватара пользователя
--mS-- в сообщении #980870 писал(а):
Что такое "центр распределения"? Что значит "найденный по децилям"? Куда он "берётся"?

Со мной все ясно, пошел за шерстью, вернулся остриженым. Мне здесь нужно ликбез по матстатистике проводить?

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 17:05 
Аватара пользователя
--mS-- в сообщении #980870 писал(а):
Что такое "центр распределения"? Что значит "найденный по децилям"? Куда он "берётся"?

Очевидно вопрос в том, что существует т.н. трехсреднее значение Тьюки, которое вычисляется как средневзвешенное 1, 2 и 3 квартилей, где 1 и 3 квартили с весом 1 а 2-й квартиль (медиана) с весом 2. Что можно рассматривать как среднее взятых с равным весом середины межквартильного размаха и медианы.
А в стартовом посте между тем межквантильный размах имеет вес удвоенный в сравнении с медианой. Возможно это для того, чтобы эта мера центральной тенденции в большей степени учитывала скошенность распределения.

-- 21.02.2015, 18:24 --

Александрович в сообщении #980698 писал(а):
Обьясните, почему центр распределения найденый по децилям берется с весом в два раза большим чем медиана?

Возможно веса действительно произвольны и обосновать их невозможно? А берутся в зависимости от того, насколько мера центральной тенденции должна учесть скошенность?

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 17:37 
Аватара пользователя
Korvin, до квартелей мы пока еще не дошли. Нам бы с децилями для начала разобраться.

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 17:46 
Аватара пользователя
Александрович в сообщении #980899 писал(а):
Korvin, до квартелей мы пока еще не дошли. Нам бы с децилями для начала разобраться.

Да это же один вопрос. Квартили те же квантили, только не 10% и 90%, а 25% и 75%. Различие чисто качественное, говорим об одной и той-же формуле. Тьюки надо почитать, что он о своем трехсреднем говорит. Но по памяти он эту меру никак не обосновывал, просто ввел и все, как более робастную чем медиана.

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 18:14 
 !  Александрович
Замечание за провокационное поведение и игнорирование содержательных вопросов собеседника. post980883.html#p980883

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 18:50 
Аватара пользователя
Lia, виноват, исправляюсь. Отвечаю на содержательный вопрос собеседника. Центр распределения это точка, вокруг которой сосредоточены значения св. Их много, например, среднее значение, медиана, мода, центр сгиба, межквартельное расстояние, междецильное расстояние, центр размаха и т.д.
В рассматриваемой формуле центры распределения взяты с весами 1 и 2. У меня в связи с этим вопрос, почему они такие берутся?(взяты).

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 19:51 
Аватара пользователя
Какая забавная терминология! А «терцили» бывают?

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 21:28 
Аватара пользователя
Александрович в сообщении #980917 писал(а):
Центр распределения это точка, вокруг которой сосредоточены значения св. Их много, например, среднее значение, медиана, мода, центр сгиба, межквартельное расстояние, междецильное расстояние, центр размаха и т.д.

И какое отношение имеет "точка, вокруг которой сосредоточены значения св." к "межквартельному расстоянию, междецильному расстоянию" и т.д.?

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 21:36 
Аватара пользователя
Александрович в сообщении #980917 писал(а):
В рассматриваемой формуле центры распределения взяты с весами 1 и 2.
Может, у меня со зрением чего-то?
Александрович в сообщении #980483 писал(а):
$\bar{x}=0.33(DZ_1+Q_2+DZ_9)$,
Где здесь веса 1 и 2? Все веса оди наковы.

 
 
 
 Re: Квантили в экспресс-оценках параметров распределений
Сообщение21.02.2015, 21:45 
Аватара пользователя
О, это сложно :mrgreen: Переведу:
$$0.33(DZ_1+Q_2+DZ_9)=\dfrac{1}{3}\left(2\cdot\dfrac{DZ_1+DZ_9}{2}+1\cdot Q_2\right).$$
:facepalm:

 
 
 [ Сообщений: 24 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group