2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4, 5
 
 Re: Теория вероятности
Сообщение16.02.2015, 13:30 
Аватара пользователя
ewert
Спасибо за помощь и терпение. Я только теперь смог выйти за рамки своей парадигмы и понял Вашу идею. Чёткого понимания вероятностного пространства пока нет, но дальше я смогу самостоятельно.

-- 16.02.2015, 14:54 --

Да, всё сложилось.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 15:19 
Аватара пользователя
ewert в сообщении #979065 писал(а):
Во-первых, они запросто могут сломаться одновременно -- например, из-за скачка напряжения. Во-вторых, есть традиция: в подобных задачах по умолчанию принято считать, что сбои происходят независимо.

У Вас второе противоречит первому....

ewert в сообщении #979065 писал(а):
Это предположение формально возможно, однако неестественно.

Наоборот - если устройство работает непрерывно (а не циклами), т.е. отказ может произойти в любой момент времени, то одновременным отказом обоих узлов нужно пренебречь.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 15:25 
Geen в сообщении #979104 писал(а):
У Вас второе противоречит первому....

Geen в сообщении #979104 писал(а):
одновременным отказом обоих узлов нужно пренебречь.

У Вас второе противоречит первому.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 15:36 
Аватара пользователя
Я бы сделала такой вывод:
    1. В учебных задачах не писать "один узел", а только "ровно один узел" или "хотя бы один узел".
    2. В прикладных задачах подробно выяснять, чего хочет заказчик.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 15:44 
Аватара пользователя
ewert в сообщении #979107 писал(а):
У Вас второе противоречит первому.

Мы говорим про экспоненциальное/Пуассона распределение?
Если да, то за малое время $\Delta t$ вероятность отказа первого узла будет $p\Delta t$, второго - $q\Delta t$, а совместного - $pq(\Delta t)^2$

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 15:49 
Аватара пользователя
provincialka
Вы сделали ёмкий и точный вывод. Я тому хорошее подтверждение -- многолетний опыт работы с заказчиками в этой теме (особенно в последней его части) меня здорово подвёл.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 15:51 
Аватара пользователя
Geen в сообщении #979116 писал(а):
Если да, то за малое время $\Delta t$ вероятность отказа первого узла будет $p\Delta t$, второго - $q\Delta t$, а совместного - $pq(\Delta t)^2$

А одномоментно это когда $\Delta t=0$.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 17:42 
Аватара пользователя
Восстановлю, пожалуй, свой пост, удаленный модератором со второй страницы этого топика. Теперь, вроде уже можно.
(Зря что ли столько писал)

provincialka в сообщении #978565 писал(а):
Обычно в задачах, если из строя вышел ровно один узел, то так и пишут: "ровно один", чтобы не было разночтений. Хотя кто знает, что подразумевал в данном случае автор?


Есть в задаче такая фраза :
''Работа каждого узла необходима для работы устройства в целом''.

Поэтому если бы подразумевали под ''Вышел из строя один из узлов'' также и вариант с обоими, то написали бы вместо этого
''Вышло из строя устройство''.

provincialka в сообщении #978584 писал(а):
Я не об этом. Чтобы применять Байеса, мы должны выделить группу несовместных событий и найти их вероятность. Что обозначает, например, число 0,01 в задаче, вероятность какого события?

1. Вышел из строя первый узел (про второй не знаем)
2. Вышел из строя только первый узел. (Ну, я бы не смогла так интерпретировать условие :o )

Конечно, 1.

Можно, конечно, и без Байеса, а просто делить. Но можно считать, что Байес незримо присутствует:

$
\Prob(H_1)=0.01\cdot0.097\quad\mbox{сдох только первый узел}
$
$
\Prob(H_2)=0.03\cdot0.099\quad\mbox{сдох только второй}
$
$
\Prob(H_3)=0.01\cdot0.03\quad\mbox{сдохли оба}
$
$
\Prob(H_4)=0.99\cdot0.97\quad\mbox{все живы}
$
$A$ - сдох один из (т.е. $A=H_1+H_2$)
Условные вероятности
$\Prob(A|H_1)=\Prob(A|H_2)=1,\ \Prob(A|H_3)=\Prob(A|H_4)=0$
и
$$
\Prob(H_1|A)=\frac{0.01\cdot0.097}{0.01\cdot0.097+0.03\cdot0.099}\approx0.24619
$$

-- Вс фев 15, 2015 12:30:35 --

Еще одна тонкость, если придраться:
Событие ''вышел из строя первый узел'' $:=B=H_1+H_3\not=H_1$, тем не менее $AB=AH_1$, поэтому вероятность про которую спрашивается в задаче
$$
\Prob(B|A)=\Prob(H_1|A)
$$

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 17:57 
Henrylee в сообщении #979159 писал(а):
Есть в задаче такая фраза :
''Работа каждого узла необходима для работы устройства в целом''.

Поэтому если бы подразумевали под ''Вышел из строя один из узлов'' также и вариант с обоими, то написали бы вместо этого
''Вышло из строя устройство''.

Поэтому -- ровно наоборот. Во всех дальнейших формулировках необходимость работоспособности обоих ровно нигде не используется, вообще ни слова про устройство в целом. Т.е. та фраза, говоря формально, ничему не противоречит, но при этом абсолютно лишняя. И, следовательно, воспринимается она как намёк на то, что зафиксирован отказ именно устройства в целом, а не ровно одного блока. То, что формулировки намёками недопустимы -- это уже другой вопрос.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 18:13 
Аватара пользователя
RikkiTan1 в сообщении #978242 писал(а):
Устройство содержит два узла. Работа каждого узла необходима для работы устройства в целом. Вероятность выхода из строя I узла равна 0,01, II - 0,03. Вышел из строя один из узлов.

И устройство естественно перестало работать.

 
 
 
 Re: Теория вероятности
Сообщение16.02.2015, 18:15 
Александрович в сообщении #979179 писал(а):
И устройство естественно перестало работать.

Но, к сожалению, обратное неверно.

 
 
 [ Сообщений: 71 ]  На страницу Пред.  1, 2, 3, 4, 5


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group