ИСНЯ думаю, что вопрос уже можно сформулировать и он может представлять некоторый интерес.
Рассмотрим, для примера, последовательность различных плоских полимино (

-мино): 1-мино, 2-мино, 3-мино... Выберем для каждого

те

-мино, для которых обрамляющая окружность будет наименьшего радиуса. Получили некоторую последовательность "оптимальных"

-мино (возможно, по несколько представителей для каждого

).
Вопрос 1: всегда ли

-мино в этой последовательности может быть образовано из некоторого

-мино той же последовательности присоединением одного квадратика?
Вопрос 2: если мы стартуя от 1-мино на каждом шаге будем добавлять квадратик к

-мино предыдущего шага по принципу "центр нового квадратика поближе к центру масс предыдущего

-мино", получим ли мы подпоследовательность "оптимальной" последовательности

-мино? или мы можем на каком-то шаге выпасть из "оптимальной"?
В вопросах 1-2 рассматриваются только допустимые для полимино способы присоединения квадратиков.
Аналогичные вопросы могут быть сформулированы для любой системы замощения плоскости / пространства одинаковыми фигурами / телами. Например, здесь спрашивают о Вопросе 2 для ромбододекаэдро-полиформ.
Я подозреваю, что ответ на Вопрос 1 всегда будет положительный; с Вопросом 2 сложнее, но хочется верить, что тоже.
-- 04.02.2015, 00:06 --Полиформы из ромбододекаэдров называют полиронами (англ. polyrhons). (Так считает Википедия, но гуглу мало что известно об этом.)