2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3
 
 Re: Четная функция
Сообщение07.01.2015, 18:43 
Аватара пользователя
а разве это не производная?

 
 
 
 Re: Четная функция
Сообщение07.01.2015, 18:45 
Аватара пользователя
Sicker
В особых точках производную так не вычисляют. Надо по определению.

 
 
 
 Re: Четная функция
Сообщение07.01.2015, 18:47 
Аватара пользователя
Terraniux в сообщении #958057 писал(а):
Интеграл не сходится абсолютно $\Rightarrow$ не интегрируема.

Не заметил, что Вы имеете ввиду не $x^2\sin (1/x)$ а ее производную. Mille pardons!

 
 
 
 Re: Четная функция
Сообщение07.01.2015, 18:49 
Sicker
provincialka указала Вам на то, что в нуле производную функции $x\sin\dfrac{1}{x}$ нельзя считать по Вашей формуле. При этом, она существует и равна $0$.
А функция $\sin\dfrac{1}{x}-\dfrac{\sin\tfrac{1}{x}}{x}$ не интегрируема на промежутках, содержащих $0$, так как интеграл $\displaystyle\int\limits_0^{\varepsilon}\dfrac{\sin\tfrac{1}{x}}{x}dx$ расходится.
Red_Herring, я исправил пример. Тот, действительно, был неверен. Конечно, $\sin\dfrac{1}{x} $ интегрируем по критерию Лебега, и даже не является несобственным.
Но этот верен.

 
 
 
 Re: Четная функция
Сообщение07.01.2015, 18:50 
Аватара пользователя
Люди! Давайте прекращать оффтоп! Куда нас заносит ... :facepalm:

-- 07.01.2015, 18:53 --

Terraniux в сообщении #958075 писал(а):
в нуле производную функции $x\sin\dfrac{1}{x}$ нельзя считать по Вашей формуле. При этом, она существует и равна $0$.

Разве? У меня так не получилось. Эта функция только непрерывна в 0.

 
 
 
 Re: Четная функция
Сообщение07.01.2015, 18:59 
Аватара пользователя

(Оффтоп)

Народная мудрость писал(а):
Если нельзя, но очень хочется—то можно

На самом деле история математики в значительной мере следует этой мудрости. Кроме интеграла по Лебегу есть несобственные интегралы, интегралы в смысле главного значения, интеграл Данжуа-Перрона, первообразные в смысле обобщенных функций. Но при этом следует четко понимать, в рамках каких определений мы находимся. А то есть такие определения решений, что каждое линейное УЧП разрешимо, но нашему народу такие решения не нужны!

 
 
 
 Re: Четная функция
Сообщение07.01.2015, 19:02 
provincialka
Действительно. Поторопился малость.
$f(x) = x^2\sin\dfrac{1}{x^2}$. Ее производная в нуле - $0$.
Но ее производная $2x\sin\dfrac{1}{x^2}-\dfrac{\sin\tfrac{1}{x^2}}{x}$ не интегрируема, т.к. интеграл $\displaystyle\int\limits_0^{\varepsilon}\dfrac{\sin\tfrac{1}{x^2}}{x}dx$ расходится.

 
 
 [ Сообщений: 37 ]  На страницу Пред.  1, 2, 3


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group