2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Аппроксимация экспериментальных данных.
Сообщение11.12.2014, 21:58 
Нужно аппроксимировать дискретный набор экспериментальных данных функцией вида:
$f(x)=ae^{-bx}+c$
, где $a,b,c$-константы.
Каким методом наиболее точно можно найти данные коэффициенты?Хотелось бы узнать название методов, а так же книги в которых данные методы описаны наиболее доступно(по возможности для физика , а не математика).
Если возможно, то в дополнение к методам и книгам, где они описаны, хотелось кратко получить последовательность действий в данном методе.

 
 
 
 Posted automatically
Сообщение11.12.2014, 22:02 
 i  Тема перемещена из форума «Математика (общие вопросы)» в форум «Карантин»
Тема перемещена в Карантин по следующим причинам:

Запишите формулы в соответствии с требованиями Правил форума, т.е. в $\TeX$.
Краткие инструкции можно найти здесь: topic8355.html и topic183.html.
Кроме этого, в теме Видео-пособия для начинающих форумчан можно посмотреть видео-ролик "Как записывать формулы".

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение11.12.2014, 22:20 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Аппроксимация экспериментальных данных.
Сообщение11.12.2014, 23:26 
fizik_ku в сообщении #944528 писал(а):
Каким методом наиболее точно можно найти данные коэффициенты?Хотелось бы узнать название методов, а так же книги в которых данные методы описаны наиболее доступно(по возможности для физика , а не математика).
Кхм... а что, название "метод наименьших квадратов" Вам ничего не говорит?

И, кстати, уточните, определены ли величины $x_i$ точно (или со сравнительно малыми погрешностями) или нет. В первом случае можно немного смухлевать и получить результат заметно проще.

 
 
 
 Re: Аппроксимация экспериментальных данных.
Сообщение12.12.2014, 03:32 
Аватара пользователя
При аппроксимации экспериментальных точек аналитической кривой стремятся подобрать такие значения коэффициентов, при которых отклонения (невязки) экспериментальных точек от расчетных были бы минимальны. Это можно сделать разными путями, отсюда названия методов.
МНК - метод наименьших квадратов - минимум суммы квадратов невязок.
МНМ - метод наименьших модулей - минимум суммы абсолютных невязок. Вашу задачу проще всего решить в Экселе при помощи Поиск решения.

 
 
 
 Re: Аппроксимация экспериментальных данных.
Сообщение14.12.2014, 10:55 
В принципе спасибо за ответы, однако я просто думал, что вдруг есть более совершенные методы кроме например МНК о которых мне было неизвестно для данного случая.

 
 
 
 Re: Аппроксимация экспериментальных данных.
Сообщение14.12.2014, 12:23 
Аватара пользователя
Методов много, для начала попробуйте МНК. Если вы уверены что ошибка распределена нормально, большего и не нужно.

 
 
 
 Re: Аппроксимация экспериментальных данных.
Сообщение14.12.2014, 15:50 
Аватара пользователя
Для начала - надо разобраться со спецификацией ошибки. Можно ли рассматривать её, как случайную величину и с каким распределением. Из этого станет ясно, использовать МНК, МНМ или минимакс, или что-то ещё.
Затем миимизируется невязка (скажем, если МНК - сумма квадратов отклонений). Для линейной модели решение просто и единственно. Но тут модель нелинейна, и есть три пути:
1. Общие методы оптимизации. Вообще говоря, требуют большого расхода вычислительных ресурсов и не гарантируют глобального оптимума (частично лечится хорошим выбором начального приближения). Относительная простота задачи и достаточная производительность современных ЭВМ расход делают несущественным, по крайней мере для однократного расчёта.
2. Линеаризация. Если бы не слагаемое $c$, для неё хватило бы логарифмирования (правда, могут быть тонкости в связи со спецификацией ошибки, при аддитивной ошибке логарифмировать может быть неверным решением). Другой подход к линеаризации - приближать в данной точке нелинейную функцию линейной, решать задачу линейной регрессии, получая поправку к коэффициентам, повторяя до сходимости. Это, например, метод Левенберга-Марквардта.
3. Методы ad hoc. Скажем, если значения$x$ идут подряд с постоянным шагом (для простоты 1), а ошибкой можно пренебречь, то, перейдя в разностям соседних отсчётов, избавляемся от параметра $c$, затем логарифмируем, что получилось, и оцениваем линейной регрессией. Параметр $b$ получается непосредственно, затем можно получить и остальные.

 
 
 [ Сообщений: 8 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group