2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 Найти условный экстремум методом Лагранжа
Сообщение10.10.2014, 13:16 
Найти точки условного экстремума функции $g(x,y,z)=xyz$,
если $x^2+y^2+z^2=a^2$, $(x>0, y>0, z>0, a>0)$

Решение
$F_1(x, y, z)=x^2+y^2+z^2=a^2$

Составим функцию Лагранжа
$L(z, y, z, \lambda)=xyz+ \lambda (x^2+y^2+z^2-a^2)$

$
\begin{cases}
\frac{dL}{dx}=yz+2 \lambda x=0\\ \\
\frac{dL}{dy}=xz+2 \lambda y=0\\ \\
\frac{dL}{dz}=xy+2 \lambda z=0\\ \\
\frac{dL}{d \lambda}=x^2+y^2+z^2-a^2=0
\end{cases}
$

Решая систему уравнений (с учетом $x>0, y>0, z>0, a>0$), нашел решения системы:

$x=y=z= \frac{a}{ \sqrt 3}, \; \lambda= -\frac{a}{2 \sqrt 3}$

Следовательно, точка $M(\frac{a}{ \sqrt 3}; \frac{a}{ \sqrt 3}; \frac{a}{ \sqrt 3})$ - стационарная

-----------------------------
Вопрос в следующем: как определить, является ли точка $M$ точкой условного максимума или минимума?

 
 
 
 Re: Найти условный экстремум методом Лагранжа
Сообщение10.10.2014, 14:12 
Аватара пользователя
А дальше напечатать как положено, пока Вас моды не побили (и за дело: если Вам печатать лень, то кто ж Вам отвечать то будет?)

 
 
 
 Posted automatically
Сообщение10.10.2014, 16:08 
 i  Тема перемещена из форума «Помогите решить / разобраться (М)» в форум «Карантин»
Тема перемещена в Карантин по следующим причинам:

Запишите формулы в соответствии с требованиями Правил форума, т.е. в $\TeX$.
Краткие инструкции можно найти здесь: topic8355.html и topic183.html.
Кроме этого, в теме Видео-пособия для начинающих форумчан можно посмотреть видео-ролик "Как записывать формулы".

Исправьте все Ваши ошибки и сообщите об этом в теме Сообщение в карантине исправлено.
Настоятельно рекомендуется ознакомиться с темами Что такое карантин и что нужно делать, чтобы там оказаться и Правила научного форума.

 
 
 
 Posted automatically
Сообщение10.10.2014, 17:30 
 i  Тема перемещена из форума «Карантин» в форум «Помогите решить / разобраться (М)»

 
 
 
 Re: Найти условный экстремум методом Лагранжа
Сообщение10.10.2014, 17:40 
Аватара пользователя
Попробуйте использовать достаточные условия условного локального экстремума в терминах знакоопределенности второго дифференциала.

 
 
 
 Re: Найти условный экстремум методом Лагранжа
Сообщение10.10.2014, 19:00 

(Оффтоп)

Если преподаватель не сильно рассердится, можете сказать, что согласно неравенства м/у ср. арифм. и ср. геом. эта точка является точкой максимума.

 
 
 
 Re: Найти условный экстремум методом Лагранжа
Сообщение11.10.2014, 12:24 
Аватара пользователя
krodd2 в сообщении #917192 писал(а):
Вопрос в следующем: как определить, является ли точка $M$ точкой условного максимума или минимума?


Непрерывная функция на компакте достигает минимума и максимума (причём в нашем случае в стационарных точках). Достаточно найти все стационарные точки. И посмотреть значения функции на них.

 
 
 [ Сообщений: 7 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group