А теперь я Вам скажу, что 95% всех используемых на практике систем управления, это либо релейные
Я не спец в системах управления вообще, но интересовался электронными усилителями. Там тоже есть система управления в виде обратной связи с выхода на вход. Для анализа устойчивости усилителей применяется частотный критерий Михайлова-Найквиста. Это что, не математика, а эвристический инженерный приём?
Но вот смотрите, что такое критерий Найквиста? Он говорит (в простейшем случае, для системы с инерционными звеньями, каким в первом приближении являются электронные усилители), что система будет устойчивой, если ее частотная характеристика при фазовом сдвиге в 180 градусов (когда отрицательная ОС превращается в положительную) имеет модуль коэффициента передачи разомкнутой системы меньше 1. Достаточно очевидно без всяких математических доказательств...
Но собственно речь шла не об этом, а о применении на практике тех теорий, которыми занимаются чистые математики.
-- 25.05.2014, 21:39 --У меня сложилось мнение, что успехи СССР в тех технических областях, где он был действительно силён - ракеты, космос, авиация, радиоэлектроника, мощные электростанции (в том числе атомные) - обусловлены успехами советской научной школы в области математического управления.
Абсолютно согласен. Я имел ввиду несколько другое, многие созданные тогда теоретические методы, так и остались красивыми теориями слабо приспособленными для практики.
-- 25.05.2014, 21:41 --В тоже время, большинство инженерных наук используют лишь традиционные разделы математики (дифференциальное и интегральное исчисление, теорию дифференциальных уравнений и т.п.). Кроме того, многие работающие на практике подходы основаны на эмпирических данных (закономерности, полученные из опыта, но не имеющие строгого обоснования), а также эвристических методах и алгоритмах (не имеющих строгого обоснования, доказательство работоспособности, которых основано лишь на удачных примерах применения). В конкретных дисциплинах инженеры, часто, разрабатывают свои математические методы, так как их нет среди разработанных математиками или инженеры о них просто не знают (очень много таких примеров можно привести электротехнике и теории автоматического управления).
математики часто либо доказывают факты уже давно известные и успешно используемые инженерами, либо изобретают теории, отлично работающие на бумаге, но слабо пригодные для практического применения.
Это какой-то толстый троллинг и вранье.
Только я один вот что знаю:
1. Изобретение компьютера - Тьюринг. Сама идея в каком-то виде предлагалась и раньше математиками (Бэббидж, Лейбниц)
2. Криптография, криптографические протоколы, RSA - криптография с открытым ключом, криптография на эллиптических кривых - придумано математиками. Разные NP-задачи в качестве проверки подлинности - изоморфизм графов, например.
3. Архиваторы.
4. Кодирование сообщений - коды Хэмминга, запись информации на CD,DVD диски с помощью конечных полей. Какой инженер придумал конечные поля?
5. Реляционная теория БД. Кодд считается математиком?
6.
, автор - Д. Кнут.
7. Линейное программирование - Канторович.
8. Марковские цепи - где только не используются. Теория массового обслуживания.
9. Регулярные языки и регулярные выражения, конечные автоматы - автор Клини.
10. Контекстно-свободные языки - упрощают написание компиляторов. Хотя, это беспонтовый пример, Хомский был лингвистом. А Хопкрофт - прикладной математик.
11. Бэкус - непонятно, математик или нет, но автор Фортрана и форм Бэкуса.
12. Джон Маккарти - по образованию математик, автор LISPa.
Обратите, пожалуйста, внимание на слово "часто" в моем посте.