В связи с оффтопным наездом двух топологов, справедливо обвинивших нас в незнании многообразий и ретировавшихся с поля мультилога, мы, решив легким взором глянуть на ситуацию в Analysis Situs, пришли к первому ощущению, навевающему некоторую грусть :
1. Многообразия и все связанные с ними структуры (открытое подмножество, окрестность, метрика, ...) явно или неявно используют евклидово координатное пространство
.
Исторически и чисто по-человечески это понятно, но снижает их возможности в исследовании пространств с нетривиальной топологией. К ним относится и интересующее нас пространство ОТО.
В принципе ОТО не нужно
(как не нужны ей оказались также исторически понятные инерциальные системы отсчета). Ей достаточны, а порой и необходимы произвольные неголономные криволинейные базисы.
Более того, согласно уравнениям ОТО, если пространство отображения (псевдо) евклидово, то в нём отсутствует любая "материя" : т.к. в нём тензор кривизны Римана - Кристоффеля
, то и консервативный тензор Эйнштейна
, а поэтому и тензор энергии-импульса "физических полей"
.
Следовательно, оно не может быть создано никакой материей, т.е. никакие метрические операции в нём в принципе невозможны. Как только вы пытаетесь в нем ввести какую-то структуру (метрику, произвести измерения), так оно становится кривым.
Поэтому, если какая-то модель использует
для отображения геометрии на числа, она заведомо становится, во-первых, приближенной, во-вторых, непригодной для топологических пространств, "локально" негомеоморфных
.
2. А пространство ОТО, в противовес бытующим (также исторически объяснимо) представлениям, "в малом" отнюдь не эквивалентно ПВМ - плоскому пространству-времени Минковского (Хирш, 79, с.7, 14, 20; Хокинг Эллис, 77, с.19; Сибгатуллин, 84, с 8). Мнение основано на возможности приведения
в любой точке к псевдоевклидову виду.
- Во-первых, непонятно, что значит "в малом", "локально" (даже хотя бы в связи с утверждением
Someone'a о незнании им, что такое "бесконечно малая окрестность" (естественно, в непрерывном пространстве ОТО).
- Во-вторых, это утверждение неточно : да, в метрическом смысле оно похоже на ПВМ, т.к. "локально" можно привести метрику к псевдоевклидову виду и занулить связность, т.е. первые производные метрики по координатам. Но вторые производные метрики занулить нельзя, т.к. в (псевдо) римановом пространстве
.
Следовательно, полной эквивалентности в точке, тем более, в "малой" окрестности, тем более, "вдоль линии" нет. А понятия "в малом", "малая окрестность", "локально гомеоморфно" неплохо бы уточнить.
3. Да и с самим "координатным пространством"
нам не всё ясно. Позняк, Шикин, 90, с.199 :
Точка - любой набор из
- вещественных чисел {
}. Множество таких наборов -
-
- мерное координатное пространство.
Т.е. процедура сопоставления точке топологического пространства её координат "переворачивается" : сначала набор чисел, а потом
, что, очевидно, неоднозначно : этим "наборам" можно сопоставить множество пространств.
Таким образом, хоть ОТО и принадлежит дифференциальной геометрии, но к стандартным определениям многообразия ("одноообразия", шутка) отношения не имеет.
Пока ОТО является точной теорией. В том смысле, что чем точнее ставится эксперимент, тем точнее сбываются её предсказания, и не существует фактов, в чем-то её опровергающих.
А последние результаты ОТО, которые мы пытаемся здесь обсудить : решение для внутреннего мира электрического заряда и дискретность пространства-времени в несопутствующих системах отсчета, - ещё раз показали универсальность ОТО :
- накрывающий характер гравитационного поля для физических полей, описываемых
: электромагнитное поле, вещество отображаются на кривизну пространства-времени, т.е. полностью геометризуются. Т.е. гравитация и электромагнетизм уже объединены ОТО;
- существенность учета гравитационного поля (т.е. кривизны пространства-времени) на любых "длинах" : в микро-, в макро- и мегамире. В противовес бытующему мнению, что кривизна пространства-времени существенна только либо в микромире на предельной планковской длине, либо в мегамире на масштабе вселенной в целом;
- тождественность микромира и макромира : электрический заряд (классический электрон) и вселенная - это один объект, рассматриваемый лишь "снаружи" (электрон) и "изнутри" (вселенная), соединяющий вакуум и внутренний мир из пылевидной незаряженной материи через узкую горловину (bottleneck) в пространстве-времени с радиусом гауссовой кривизны, равным классическому радиусу. Горловина геометрически описывает фундаментальную константу - электрических заряд
, который выражается через кривизну пространства-времени;
- масса покоя элементарной частицы
тоже оказывается объектом ОТО : она равна гравитационной энергии внутреннего мира заряда на горловине и может быть найдена по измерению кривизны пространства-времени в любой его точке;
- решается проблема барионной асимметрии вселенной : мир из частиц и антимир из античастиц расположены на двух параллельных 3-гиперповерхностях, между которыми вселенные являются норами, соединяющими их через горловины;
- наконец, в пространстве-времени могут возникать дискретные области, периодически непроницаемые для световых геодезических, что позволяет надеяться на возможность объяснить квантовые явления с помощью "непрерывного" гравитационного поля (программа Эйнштейна).
Пока, к сожалению, ни математики, ни физики не познакомились с этими замечательными возможностями ОТО.
Добавлено спустя 17 минут 43 секунды:
Someone
Цитата:
Я Вам долго пытался объяснить в той теме, что Ваши "результаты" основаны на куче глупостей и прямых математических ошибок.
Что касается глупостей, то это - к Господу Богу, а вот насчет прямых математических ошибок просьба эту кучу привести.
Добавлено спустя 24 минуты 27 секунд:Котофеич (
Цитата:
1)
,
(2)
.
(3)
.
Где Вы здесь ***, скажите пожалуйста, узрели «время», да ещё и «обратимое»? Локально, глобально?
*** Даже если оставить в стороне не менее любопытный вопрос : где Вы здесь усмотрели классику?
Цитата:
Evil or Very Mad Нашли чем испужать. Написали метрику в общем виде и радуетесь. Вы наверное думаете что Хокинг с котом глупее Вас Question В ОТО имеют значение только конкретные космологические решения.
Для чего? Для устойчивости заработной платы? Пожалуйста, обоснуйте это по-котовски. Ведь решение, даже частное, любого нелинейного дифференциального уравнения имеет незабываемый смысл...
Цитата:
Можно также трактовать ОТО как полевую теорию на фоне Минковского.
Только что чуть выше высказан аргумент, что это не так. Вроде бы ни локального ПВМ, ни, тем более, глобального фона в виде ПВМ (той же размерности) нет.
Насчет формального эволюционного параметра при записи уравнений в ХИ-форме выясняется.