2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2, 3, 4, 5 ... 12  След.
 
 Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 17:57 
Аватара пользователя
Имеется функция n переменных. Разложение такой функции в ряд Тейлора хорошо известно: первый член - функция в базисной точке, второй - скалярное произведение вектор-градиента на вектор приращений аргумента, третий - квадратичная форма с матрицей Гессе...
Вопрос, как записать остальные члены ряда Тейлора в векторно-матричном виде?
По всей видимости, требуется использование многомерных матриц, в какой литературе это описано?

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:12 
Какой еще Гессе?
значение, первый дифференциал, второй дифференциал и т.д.
Посмотрите например в сборнике задач под редакцией Ефимова Поспелова (ранее Ефимова Демидовича)

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:21 
Аватара пользователя
mihailm в сообщении #856381 писал(а):
Какой еще Гессе?
значение, первый дифференциал, второй дифференциал и т.д.
Посмотрите например в сборнике задач под редакцией Ефимова Поспелова (ранее Ефимова Демидовича)

В скалярной форме, это в любом учебнике есть, напрмер:
http://ru.wikipedia.org/wiki/%D0%FF%E4_ ... 1.8B.D1.85

Матрица Гессе - это матрица вторых частных производных :-)
http://ru.wikipedia.org/wiki/%C3%E5%F1% ... 1.81.D0.B5

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:24 
Аватара пользователя
В учебниках для математиков (Зорич - начало второго тома, Картан - диф. исчисление, д. формы) теория строится для многомерного простанства.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:27 
Аватара пользователя
$y(\mathbf x+\mathbf h)=y(\mathbf x)+\frac{\partial y}{\partial x^i}(\mathbf x) h^i+\frac 1 2 \frac{\partial^2 y}{\partial x^i \partial x^k}(\mathbf x) h^i h^k+\frac 1 6 \frac{\partial^3 y}{\partial x^i \partial x^k \partial x^\ell}(\mathbf x) h^i h^k h^\ell+...$
... где в каждом слагаемом по повторяющимся индексам подразумевается суммирование.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:29 
Аватара пользователя
svv в сообщении #856393 писал(а):
$y(\mathbf x+\mathbf h)=y(\mathbf x)+\frac{\partial y}{\partial x^i}(\mathbf x) h^i+\frac 1 2 \frac{\partial^2 y}{\partial x^i \partial x^k}(\mathbf x) h^i h^k+\frac 1 6 \frac{\partial^3 y}{\partial x^i \partial x^k \partial x^\ell}(\mathbf x) h^i h^k h^\ell+...$

Да, это понятно, нужно в векторно-матричной форме.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:33 
prof.uskov
Так это она и есть. В тензорном виде.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:34 
Аватара пользователя
Интересно продолжение формулы (2) вот, например, отсюда
http://bigor.bmstu.ru/?cnt/?prn=y/?doc=MO/ch0702.mod

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:38 
prof.uskov в сообщении #856394 писал(а):
Да, это понятно, нужно в векторно-матричной форме.
То, что вам нужно, выписывается механически из уже данного.$$f(\mathbf x + \Delta\mathbf x) - f(\mathbf x) = \sum_{n=1}^\infty \mathcal D_n(f,\mathbf x) \underbrace{\Delta\mathbf x\cdots\Delta\mathbf x}_{n\text{ штук}},$$где $\mathcal D_n(f,\mathbf x)$ — матрица с элементами $\dfrac1{n!}\dfrac{\partial^nf(\mathbf x)}{\partial x_{i_1}\cdots\partial x_{i_n}}$ — ваши обобщённые матрицы, которые надо себе представлять в виде строки, состоящей из строк$\big($, состоящих из строк$\big)^{n-2}$ — для правильного умножения на столбцы $\Delta\mathbf x$. Обычно в таких случаях используют индексную нотацию, которая и к реализации вычислений по таким формулам ближе, и для человека тоже выглядит понятнее, ведь ему эволюция пока не позволила представлять гиперкубические матрицы с такой же лёгкостью как функции из $(1..k)^n$.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:40 
А понял, нужно обязательно в матричной форме (извините, заголовок не прочитал)

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:51 
Аватара пользователя
prof.uskov
Давайте ещё немного поторгуемся. Посмотрите на правую часть формулы (2). Слагаемые буду нумеровать с нуля.
Нулевое слагаемое: скаляр, образованный из нулевых производных $\Phi$ в точке $X^r$ (т.е. сама $\Phi(X^r)$), умножается ноль раз на вектор $X-X^r$.
Первое слагаемое: вектор, образованный из первых производных $\Phi$ в точке $X^r$, умножается один раз на вектор $X-X^r$.
Второе слагаемое: матрица, образованная из вторых производных $\Phi$ в точке $X^r$, умножается два раза на вектор $X-X^r$.
Как Вы себе представляете в этом ключе третье слагаемое? Как Вы думаете, почему автор не записал его явно?

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 19:56 
svv в сообщении #856407 писал(а):
Второе слагаемое: матрица, образованная из вторых производных $\Phi$ в точке $X^r$, умножается два раза на вектор $X-X^r$.
…и при этом ему уже здесь приходится начинать играть в «Транспонирование и разностороннесть умножения»!

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 20:28 
Аватара пользователя
svv в сообщении #856407 писал(а):
prof.uskov
Как Вы себе представляете в этом ключе третье слагаемое? Как Вы думаете, почему автор не записал его явно?

Не написал потому, что не захотел вводить в рассмотрение многомерные матрицы. После квадратичной формы должно идти слагаемое с кубической формой, матрица будет 3-х мерной. Вот в этой книжке рассматриваются операции над многомерными матрицами, в том числе операция умножения, но автор ряд Тейлора не рассматривает.
Соколов Н.П. "Введение в теорию многомерных матриц"
http://www.twirpx.com/file/1100866/
Так что если повозиться, можно и самому расписать, НО
я смутно помню, что в каком-то справочнике видел третье слагаемое ряда, расписанное с помощью трехмерной матрицы, но найти не могу... Вот и спрашиваю, может, кто встречал.

-- 28.04.2014, 21:33 --

svv в сообщении #856407 писал(а):
prof.uskov
Давайте ещё немного поторгуемся. Посмотрите на правую часть формулы (2). Слагаемые буду нумеровать с нуля.
Нулевое слагаемое: скаляр, образованный из нулевых производных $\Phi$ в точке $X^r$ (т.е. сама $\Phi(X^r)$), умножается ноль раз на вектор $X-X^r$.
Первое слагаемое: вектор, образованный из первых производных $\Phi$ в точке $X^r$, умножается один раз на вектор $X-X^r$.
Второе слагаемое: матрица, образованная из вторых производных $\Phi$ в точке $X^r$, умножается два раза на вектор $X-X^r$.


Вот здесь понятней про 2-е слагаемое.
http://mathserfer.com/theory/kiselev2/node74.html
Второе слагаемое - это квадратичная форма с матрицей Гессе.
Ее знакоопределенность любят изучать при исследовании точек экстремума. Критерий Сильвестра помните :-)


-- 28.04.2014, 21:52 --

arseniiv в сообщении #856401 писал(а):
prof.uskov в сообщении #856394 писал(а):
Да, это понятно, нужно в векторно-матричной форме.
То, что вам нужно, выписывается механически из уже данного.$$f(\mathbf x + \Delta\mathbf x) - f(\mathbf x) = \sum_{n=1}^\infty \mathcal D_n(f,\mathbf x) \underbrace{\Delta\mathbf x\cdots\Delta\mathbf x}_{n\text{ штук}},$$где $\mathcal D_n(f,\mathbf x)$ — матрица с элементами $\dfrac1{n!}\dfrac{\partial^nf(\mathbf x)}{\partial x_{i_1}\cdots\partial x_{i_n}}$ — ваши обобщённые матрицы, которые надо себе представлять в виде строки, состоящей из строк$\big($, состоящих из строк$\big)^{n-2}$ — для правильного умножения на столбцы $\Delta\mathbf x$. Обычно в таких случаях используют индексную нотацию, которая и к реализации вычислений по таким формулам ближе, и для человека тоже выглядит понятнее, ведь ему эволюция пока не позволила представлять гиперкубические матрицы с такой же лёгкостью как функции из $(1..k)^n$.

При записи многомерных матриц используются сечения - представление в виде совокупности обычных матриц, тоже достаточно наглядно, см. например книжку Соколова.

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 22:46 
Аватара пользователя
Скачал книгу Соколова.
В первой главе только вводный параграф 1 общий, остальные посвящены детерминантам (не наша тема). Вторая глава целиком посвящена детерминантам — тоже пропускаем. Открываем начало третьей главы:

Цитата:
Рассматривая основные операции над многомерными матрицами ... будем определять их в зависимости от операций над ассоциированными с этими матрицами полилинейными формами, заданными над некоторым числовым полем $P$.
...
$F=\sum\limits^n_{i_1 i_2...i_p=1}A_{i_1 i_2...i_p}x_{i_1}^{(1)}x_{i_2}^{(2)}...x_{i_p}^{(p)}$
Где-то я это уже видел. Ведь
Цитата:
Полилинейной функцией, или тензором на $V$ типа $(p,q)$ называется линейная по каждому своему аргументу действительная функция ... от $q$ векторных и $p$ ковекторных аргументов.
(Алексеевский, Виноградов. Основные понятия и идеи дифференциальной геометрии.) Здесь дано чуть более общее определение. Набор $A_{i_1 i_2...i_p}$ — не что иное как набор компонент тензора. Сама функция, о которой идет речь, записывается в компонентах точно такой формулой.

И чем хрен слаще редьки? Меня сразу насторожило то, насколько старательно Соколов избегает понятия «тензор»!

 
 
 
 Re: Ряд Тейлора в векторно-матричной форме
Сообщение28.04.2014, 22:58 
prof.uskov в сообщении #856418 писал(а):
При записи многомерных матриц используются сечения - представление в виде совокупности обычных матриц, тоже достаточно наглядно
Имеется в виду такое: $A = \begin{bmatrix} B_1 & B_2 & B_3 \end{bmatrix}$? Так оно плохо к произвольной размерности применяется. Явное использование индексов гораздо нагляднее.

 
 
 [ Сообщений: 180 ]  На страницу 1, 2, 3, 4, 5 ... 12  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group