Пусть Т-теория сигнатуры { <= }, задаваемая аксиомами А1-А5: А1: для любого х (х=х) А2: для любых х и у ((х<=y & y<=x) следует x=y) A3: для любых x,y и z((x<=y & y<=z) следует x<=z) A4: для любых х и у(x<=y или y<=x) A5: для любых х и у((x<=y & не х=у) следует существует z(x<=z & z<=y & не x=z & не z=y)) Сколько существует полных теорий, расширяющих Т?
Есть результаты в виде 4х теорий: плотного линейного порядка с концевыми точками, без них, и с одним(левым или правым краем). Но не знаю, как доказать полноту имеющихся, и отсутствие(если это все) других.
|