2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8  След.
 
 Re: Геометрическая вероятность
Сообщение10.11.2013, 18:32 
Аватара пользователя
 !  Nemiroff, Gelhenec, замечание за переход на личности, Gelhenec, замечание за кривое оформление цитаты и периодическое неоформление формул $\TeX$ом.

 
 
 
 Re: Геометрическая вероятность
Сообщение10.11.2013, 19:11 
--mS-- в сообщении #787117 писал(а):
Совпадают. Мало - откройте учебник А.А.Боровкова "Теория вероятностей" и изучите пример 23 параграфа 9 гл. 4. Там находится в точности вероятность противоположного события - что все три длины обломков будут меньше половины длины отрезка.

Тогда скажите, пожалуйста, эта задача и задача 1.44 из книги Вентцель, Овчаров "Прикладные задачи теории вероятностей" (1983) отличаются?

 
 
 
 Re: Геометрическая вероятность
Сообщение10.11.2013, 19:37 
Gelhenec в сообщении #787172 писал(а):
Тогда скажите, пожалуйста, эта задача и задача 1.44 из книги Вентцель, Овчаров "Прикладные задачи теории вероятностей" (1983) отличаются?

Да.

 
 
 
 Re: Геометрическая вероятность
Сообщение10.11.2013, 19:56 
Аватара пользователя
Разумеется, и самым кардинальным образом. Когда авторы говорят "стержень произвольным образом разламывается на три части", они имеют в виду, что две точки излома наудачу и независимо друг от друга выбираются на стержне как на отрезке длиной $L$.

Ключевое слово - независимо. Это значит, что какой бы ни была координата первой точки, вероятность второй точке попасть на участок длиной $\Delta y$ равна $\frac{\Delta y}{L}$.

В Вашей задаче координата второй точки выбирается наудачу уже на меньшем отрезке. Это значит, что если, например, первая точка попала в точку $0{,}8L$, то вероятность второй точке попасть на участок длиной $\Delta y$ равна $\frac{\Delta y}{0{,}8L}$. А если в другую точку - другая.

См. post786650.html#p786650

Как только Вы начинаете Ваши точки изображать в квадрате или его части, вероятности попадания в области Вы считаете как отношения площадей областей к площади квадрата (или его части). В Вашей же задаче вероятности совсем иные.

 
 
 
 Re: Геометрическая вероятность
Сообщение10.11.2013, 21:43 
--mS-- в сообщении #787208 писал(а):
В Вашей задаче координата второй точки выбирается наудачу уже на меньшем отрезке

На большем отрезке

 
 
 
 Re: Геометрическая вероятность
Сообщение10.11.2013, 21:45 
Аватара пользователя
Gelhenec в сообщении #787281 писал(а):
--mS-- в сообщении #787208 писал(а):
В Вашей задаче координата второй точки выбирается наудачу уже на меньшем отрезке

На большем отрезке
На меньшем, чем исходный.

 
 
 
 Re: Геометрическая вероятность
Сообщение11.11.2013, 22:16 
Аватара пользователя
У меня появилась версия, откуда могло взяться $48$. Если рассматривать длину отрезка после двух изломов как случайную величину, то её матожидание оказывается равным ${9 \mathord{\left/ {\vphantom {9 {16}}} \right. \kern-\nulldelimiterspace} {16}}$. Тогда "правильным ответом" было бы $27$.

 
 
 
 Re: Геометрическая вероятность
Сообщение11.11.2013, 22:31 
Утундрий в сообщении #787656 писал(а):
У меня появилась версия, откуда могло взяться $48$. Если рассматривать длину отрезка после двух изломов как случайную величину, то её матожидание оказывается равным ${9 \mathord{\left/ {\vphantom {9 {16}}} \right. \kern-\nulldelimiterspace} {16}}$. Тогда "правильным ответом" было бы $27$.
Откуда взялось 48, в принципе, понятно.
Если рассматривать много неверных, но в чем-то правдоподобных решений, как правило возникают дроби, у которых знаменатель делит 48 (достаточно посмотреть версии в этой ветке). Одно из этих правдоподобных решений (какое именно - Бог весть) организаторы олимпиады посчитали верным. Ну а множитель 48 появился, чтобы неверные и "верное" решение вводились однозначно.

Гораздо интереснее другой вопрос: дождемся ли мы признания ТС?

 
 
 
 Re: Геометрическая вероятность
Сообщение11.11.2013, 22:37 
Аватара пользователя
Но любопытно, что $48$ может появиться и вполне "верным" способом.

 
 
 
 Re: Геометрическая вероятность
Сообщение11.11.2013, 23:07 
Утундрий в сообщении #787663 писал(а):
Но любопытно, что $48$ может появиться и вполне "верным" способом.
Уже смайлик :shock: поставил. Но кавычки заметил.
Верным не может. А "верными" - сколько угодно.

 
 
 
 Re: Геометрическая вероятность
Сообщение12.11.2013, 02:26 
Аватара пользователя
И потом, где гарантия, что ТС переписал условие правильно? Вообще желательно бы взглянуть на первоисточник. Олимпиада-то "интернет-", как было сказано.

 
 
 
 Re: Геометрическая вероятность
Сообщение12.11.2013, 03:29 
Аватара пользователя
Не совсем первоисточник, но тоже занимательно: http://window.edu.ru/resource/058/76058
Стр. 54, задача 17. "Ответ" чуть дальше.

 
 
 
 Re: Геометрическая вероятность
Сообщение12.11.2013, 10:08 
Аватара пользователя
В связи с этой задачей, у меня вопрос.
Пусть мы берем стержень длиной L, и случайным образом разламываем его на две части.
Теперь "меньший из двух" стержней откладываем в сторону, а больший из двух снова ломаем на две части.
Получилось всего три стержня.
Вопрос:
1. С какой вероятностью "меньший из двух" стержень будет "меньшим из трех"?
2. Соответственно, с какой вероятностью "меньший из двух" будет "большим из трех"?

 
 
 
 Re: Геометрическая вероятность
Сообщение12.11.2013, 10:55 
1. У меня получается

$P=3(1+2\ln{\frac 2 3})\approx 0.5672$

 
 
 
 Re: Геометрическая вероятность
Сообщение12.11.2013, 11:19 
Shadow в сообщении #787808 писал(а):
1. У меня получается

$P=3(1+2\ln{\frac 2 3})\approx 0.5672$
Многовато будет! Может, там двойка вместо тройки?
У меня примерно $0.38$ получилось (численно).

 
 
 [ Сообщений: 107 ]  На страницу Пред.  1 ... 3, 4, 5, 6, 7, 8  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group