2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Ответить на тему На страницу Пред.  1, 2, 3, 4, 5 ... 7  След.
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:08 
Аватара пользователя


22/10/08
1286
Учитель! Я честно написал то что засело...

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:14 
Заслуженный участник
Аватара пользователя


15/10/08
12738
ИгорЪ
Как Вы относитесь к арифметическому пространству?

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:18 
Аватара пользователя


22/10/08
1286
Утундрий
О! Почти как к параллельному переносу. И к связности. С атеистическим благоговением Сидхартхи...

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:24 
Заслуженный участник
Аватара пользователя


15/10/08
12738
Видимо такой тон надо понимать как намёк начать излагать первым? Что ж, я не прочь. Отосплюсь и излОжу.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:35 
Аватара пользователя


22/10/08
1286
Дык чё излагать то, если без непонятного новое объяснить невозможно! Вам придется ввести что то кроме Зингера!

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:42 
Заслуженный участник
Аватара пользователя


15/10/08
12738
ИгорЪ в сообщении #765982 писал(а):
без непонятного новое объяснить невозможно!

Допустим, но такая задача и не ставится. Цель всего лишь описать правила и научить эффективно играть по этим правилам.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:48 
Аватара пользователя


22/10/08
1286
Ясно. Думаю, иного пути как труд здесь нет. Скорость овладения зависит от таланта ученика и терпения гуру. Какую то тензорную мнемонику с картинками я видел у Пенроуза , в толстой книге про всю физику, но не вникал, гляньте, м. б. методически это что то особенно простое.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 22:53 
Заслуженный участник
Аватара пользователя


15/10/08
12738
ИгорЪ в сообщении #765993 писал(а):
то тензорную мнемонику с картинками я видел у Пенроуза

Выдал, ЖЖЖукообразные такие. Как вспомню, так взрогну :mrgreen:

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение20.09.2013, 23:18 
Аватара пользователя


22/10/08
1286
Диаграммы Фейнмана, тоже насекомые...

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение21.09.2013, 01:03 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Утундрий в сообщении #765996 писал(а):
Выдал, ЖЖЖукообразные такие. Как вспомню, так взрогну

Тоже впечатление отрицательное. Перестарался он малость.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение21.09.2013, 01:21 
Заслуженный участник


09/09/10
3729

(Оффтоп)

Ну, это как в теории доказательств — можно рисовать деревья вывода и их нормализовать (то есть перерисовывать его), а можно писать лямбда-выражения и их бета-редуцировать, это одно и то же.Угадайте, что удобнее и нагляднее (подсказка: не деревья). Но вот, скажем, для линейной логики удобнее именно рисовать proof-nets, которые действительно похожи на диаграммы Пенроуза, потому что символьным аналогом будут многопоточные программы, записанные в CSP-стиле.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение21.09.2013, 02:00 
Заслуженный участник
Аватара пользователя


30/01/06
72407
Теорией доказательств не пользовался. Но имхо, принципы "удобнее" и "нагляднее" могут входить в противоречие. Если человек хорошо знает область, ему не нужна особая наглядность от нотации, он воспринимает её и так. А вот удобство для него критично. А для новичка наоборот. С тензорами, в частности, есть трудность в привыкании к "нотации Эйнштейна" (опусканию значков суммирования). Когда привыкнешь, то её не замечаешь, а читать формулы просто и удобно, но поначалу надо всё-таки пописать сигмы, попривыкнуть, что с чем умножается и суммируется, и научиться на личном опыте не путаться в индексах. Аналогично (хоть и более узкоприменимо) с бра-кет-нотацией Дирака.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение26.09.2013, 19:24 
Заслуженный участник
Аватара пользователя


15/10/08
12738
В общем, нащупываются два (нечестных) пути.

Быстрый: $\left( {x \in \mathbb{R}^n } \right) \mapsto \vec r\left( x \right) \in \mathbb{E}^n$. Хорош тем, что всё получается однозначно. Плох - тем же.

Занудный: начать с $\mathbb{R}^n }$ и вводить, вводить, вводить... Хорош тем, что несколько понятнее, зачем вводится. Плох названием.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение26.09.2013, 22:26 
Заслуженный участник
Аватара пользователя


30/01/06
72407
А можно оба перевести на русский?

А-а-а, это про римановы многообразия, что ли?

-- 26.09.2013 23:29:01 --

Утундрий в сообщении #768066 писал(а):
Быстрый: $\left( {x \in \mathbb{R}^n } \right) \mapsto \vec r\left( x \right) \in \mathbb{E}^n$. Хорош тем, что всё получается однозначно.

Хочу развеять один миф: риманово многообразие вкладывается в $\mathbb{E}^{m}$ ($m\geqslant n$ конечно же) не однозначно. Возьмём двумерную сферу - мы привыкли, что она вкладывается в 3D как мяч. Но на самом деле, её можно мять туда-сюда, для внутренней геометрии нечувствительно.

 Профиль  
                  
 
 Re: Грубое введение в тензоры
Сообщение27.09.2013, 02:34 


19/06/12
321
Тензоры - алгебраические объекты. Поэтому вполне имеет смысл
Утундрий в сообщении #768066 писал(а):
начать с $\mathbb{R}^n }$ и вводить, вводить, вводить...
... тензоры. До введения понятия многообразия.

Многие учебники начинают с определения многообразия, потом вводят касательное пространство, и уже в нем определяют тензоры. Поскольку касательное пространство есть $\mathbb{R}^n $, этот подход ничем не отличается от предыдущего по существу. Но может несколько смешать алгебру и геометрию в голове изучающего материал впервые.

"Быстрый путь", т.е. рассмотрение поверхности в евклидовом пространстве вместо общего многообразия, вполне честен, хотя и отнюдь не быстр. Никаких преимуществ в части определения тензоров он не дает. Скорее, напротив. Но в отношении метрики и кривизны именно этот путь
Утундрий в сообщении #768066 писал(а):
Хорош тем, что несколько понятнее, зачем вводится.
Хорошо и правильно до римановых многообразий знакомить людей с элементарной диф. геометрией поверхностей в $\mathbb{R}^3 }$. Хотя бы в минимальном объеме.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Ответить на тему  [ Сообщений: 102 ]  На страницу Пред.  1, 2, 3, 4, 5 ... 7  След.

Модераторы: photon, whiterussian, profrotter, Jnrty, Aer, Парджеттер, Eule_A, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Mikhail_K


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group