2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу 1, 2  След.
 
 Забавный факт
Сообщение26.05.2013, 14:21 
Как без занудного дифференцирования доказать, что для всех $x>0$ выполняется
$$x^{\sqrt2}+\frac{1}{x^{\sqrt2}}\geq2\left(x+\frac{1}{x}\right)-2$$
Может, это кому-то сразу очевидно?
Спасибо!

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 15:55 
Аватара пользователя
Кандидатом на роль чего-то более простого, из чего это можно вывести, кажется$$x^{\sqrt2}+\frac{1}{x^{\sqrt2}}\geqslant x+\frac{1}{x}\geqslant 2$$

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:10 
Можно переписать в виде
$$
{\left(\frac{x^{\frac1{\sqrt2}}+x^{\frac1{\sqrt2}}}2\right)^{\sqrt2}
\ \ge \left(\frac{x+x^{-1}}2\right)^{\frac1\sqrt2}} .
$$
Используя неравнства для средних с $p_1=1/\sqrt2$, $p_2=1$, получаем:
$$
\left(\frac{x^{\frac1{\sqrt2}}+x^{\frac1{\sqrt2}}}2\right)^{\sqrt2}
\ge\frac{x+x^{-1}}2\ge \left(\frac{x+x^{-1}}2\right)^\frac1{\sqrt2},
$$
поскольку $\frac{x+x^{-1}}2\ge1$.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:31 
Vince Diesel в сообщении #728585 писал(а):
Используя неравнства для средних с $p_1=1/\sqrt2$, $p_2=1$, получаем:
$$
\left(\frac{x^{\frac1{\sqrt2}}+x^{\frac1{\sqrt2}}}2\right)^{\sqrt2}
\ge\frac{x+x^{-1}}2
$$

$\sqrt2>1$. Поэтому неравенство в другую сторону.

svv в сообщении #728577 писал(а):
Кандидатом на роль чего-то более простого, из чего это можно вывести, кажется$$x^{\sqrt2}+\frac{1}{x^{\sqrt2}}\geqslant x+\frac{1}{x}\geqslant 2$$

Ваше более слабое.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:33 
Аватара пользователя
Пусть $a>1$.
Если $x\geqslant 1$, то $x^a-x\geqslant 0$ и $x^a x\geqslant 1$, поэтому
$x^a-x\geqslant \dfrac{x^a-x}{x^a x}$

Если $0<x<1$, то $x^a-x<0$ и $x^a x<1$, поэтому опять-таки
$x^a-x\geqslant \dfrac{x^a-x}{x^a x}$

Отсюда
$x^a-x\geqslant \dfrac 1 x -\dfrac 1 {x^a}$

$x^a+\dfrac 1 {x^a}\geqslant x+\dfrac 1 x $

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:38 
Понятно, что мы навсегда можем положить $x\geq1$.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:40 
Аватара пользователя
svv в сообщении #728594 писал(а):
$x^a+\dfrac 1 {x^a}\geqslant x+\dfrac 1 x $

Очевидно $y+\frac{1}{y} >  x+\frac{1}{x} > 2 $ при $y > x >1.$ Дальше что?

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:53 
Аватара пользователя
Да, более слабое, ошибся.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 16:58 
arqady в сообщении #728546 писал(а):
Как без занудного дифференцирования доказать, что для всех $x>0$ выполняется
$$x^{\sqrt2}+\frac{1}{x^{\sqrt2}}\geq2\left(x+\frac{1}{x}\right)-2$$

Почему занудного? Оно сводится к $x^{\sqrt2}+\dfrac{1}{x^{\sqrt2}}\geqslant x+\dfrac{1}{x}$ всего лишь двукратным дифференцированием.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 17:01 
Аватара пользователя
$x=1+t^2$
Что при малых $t^2$ неравенство верно, получается без дифференцирования. Поможет?

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 17:09 
ewert,
как-то Вы, видимо, хитро брали производную. :mrgreen:
У меня получилось после троекратного. Но хочется как-то сразу увидеть...
Может, какая-то выпуклость?

-- Вс май 26, 2013 18:10:30 --

TOTAL, я не понимаю, что Вы имеете в виду. Это ж надо доказывать.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 17:12 
arqady в сообщении #728624 писал(а):
ewert,
как-то Вы, видимо, хитро брали производную. :mrgreen:

Я просто умножил на икс после первого дифференцирования.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 17:15 
Аватара пользователя
arqady в сообщении #728624 писал(а):
TOTAL, я не понимаю, что Вы имеете в виду. Это ж надо доказывать.
Без дифференцирования видно, что в какой-то окрестности $x=1$ неравенство верно.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 17:52 
TOTAL в сообщении #728628 писал(а):
Без дифференцирования видно, что в какой-то окрестности $x=1$ неравенство верно.

Я тоже не понимаю, как можно без дифференцирования углядеть эффект третьего порядка. Да и что это даст?...

А вообще если сразу, то надо просто переписать исходное неравенство в виде $\ch\alpha t\geqslant\alpha^2\ch t-\alpha^2+1$, после чего оно воистину очевидно.

 
 
 
 Re: Забавный факт
Сообщение26.05.2013, 21:37 
arqady в сообщении #728592 писал(а):
Vince Diesel в сообщении #728585 писал(а):
Используя неравнства для средних с $p_1=1/\sqrt2$, $p_2=1$, получаем:
$$
\left(\frac{x^{\frac1{\sqrt2}}+x^{\frac1{\sqrt2}}}2\right)^{\sqrt2}
\ge\frac{x+x^{-1}}2
$$

$\sqrt2>1$. Поэтому неравенство в другую сторону.


Тогда так. Положим в неравенстве
$$
{\left(\frac{x^{\frac1{\sqrt2}}+x^{\frac1{\sqrt2}}}2\right)^{\sqrt2}
\ \ge \left(\frac{x+x^{-1}}2\right)^{\frac1\sqrt2}} 
$$
$y=x^{2^\frac14}$:
$$
\left(\left(\frac{y^{2^{\frac14}}+y^{-2^{\frac14}}}2\right)^{2^{-\frac14}}\right)^{2^{3/4}}
\ge \left(\left(\frac{y^{2^{-\frac14}}+y^{-2^{-\frac14}}}2\right)^{2^{\frac14}}\right)^{2^{-3/4}}.
$$
Оно верное, поскольку
$$
\left(\frac{y^{2^{\frac14}}+y^{-2^{\frac14}}}2\right)^{2^{-\frac14}}
\ge \left(\frac{y^{2^{-\frac14}}+y^{-2^{-\frac14}}}2\right)^{2^{\frac14}},
$$
неравенство $2^{1/4}>2^{-1/4}$ здесь в нужную сторону, выражения слева и справа в последнем неравенстве не меньше единицы и левая часть возводится в большую степень, чем правая.

 
 
 [ Сообщений: 30 ]  На страницу 1, 2  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group