2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1 ... 38, 39, 40, 41, 42, 43, 44 ... 46  След.
 
 Re: Поиск простых чисел
Сообщение23.12.2012, 23:16 
Заблокирован


03/09/06

188
Украина, г. Харьков
Jnrty в сообщении #662672 писал(а):
Хм... Я попробовал, у меня работает, если
1) щёлкнуть левой кнопкой мыши по знаку "=" (иногда приходится щёлкнуть несколько раз, прежде чем сработает, но эта проблема, скорее всего, гнездится у меня);
2) поместить курсор в окошко ввода вычисляемого выражения и нажать клавишу "Enter".

А слово "sqrt" в самом начале выражения, часом, не стёрли? Это слово - команда извлечь квадратный корень.

По п. 1). возможно и у меня та же проблема.
По п. 2) - зайду и ёще раз проделаю-- в первой пробе наж. кнопку, а не "Enter".
Спасибо Вам.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение25.12.2012, 11:07 


15/12/05
754

(Оффтоп)

Пожалуй дело в браузере. Если в IE не работает. Попробуйте в Chrome или Safari

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение28.12.2012, 20:53 
Заблокирован


03/09/06

188
Украина, г. Харьков
Разобрался с прогой. Предел вводимых знаков -- 195. И это удручает. Тем не мение, придумал методику играючись извлекать кв. корни даже из 600 и более знаков безошибочно и с точным значением разряда единиц в результате. Затея с он-лайн прогой нужна была для сравнения возможностей. О деталях находки раскажу как подготовлю связный текст, иначе получится "винигрет" с упущениями. Я так не привык.
За советы всем спасибо.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение31.12.2012, 11:06 
Заблокирован


03/09/06

188
Украина, г. Харьков
Где-то за 18-20 часов извлёк кв. корень из 617 значного числа. Пока вдаваться в подробности не желаю, а делаю пробу предъявить скриншот полной записи в Excel. Так как здесь нет навигации вставка рисунка, даю прямую ссылку: http://laperino.narod2.ru/kkv617z.jpg

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение01.01.2013, 18:23 
Заслуженный участник
Аватара пользователя


09/02/09
2092
Минск, Беларусь
Каким образом всё это относится к теме?

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение02.01.2013, 10:56 
Заблокирован


03/09/06

188
Украина, г. Харьков
Droog_Andrey в сообщении #665887 писал(а):
Каким образом всё это относится к теме?

Прямо -- никаким боком. Косвенно немножко. На 37 стр. этой темы Вы сами мне предложили пример для факторизации, а операция извлечение корней из таких больших чисел как раз и необходима для моего подхода. Вот и заявил о своей находке усовершенствования одной из самых трудоёмких операций. И думается, что улучшение мною выполнено впервые с момента открытия способа извлечения корней. Если я неосведомлен, поправьте.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение02.01.2013, 11:49 
Заслуженный участник


20/12/10
9150

(Оффтоп)

anwior в сообщении #665621 писал(а):
Где-то за 18-20 часов извлёк кв. корень из 617 значного числа.
Если речь идёт о том, чтобы найти целую часть квадратного корня, то это делается гораздо быстрее (меньше секунды).

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение02.01.2013, 15:21 
Заблокирован


03/09/06

188
Украина, г. Харьков
nnosipov в сообщении #666110 писал(а):
Если речь идёт о том, чтобы найти целую часть квадратного корня, то это делается гораздо быстрее (меньше секунды).

Вы меня искренне обрадовали новостью, но ... жажду ссылку на таковую прогу.
Заранее благодарю.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение02.01.2013, 16:12 
Заслуженный участник


20/12/10
9150

(Оффтоп)

anwior в сообщении #666184 писал(а):
жажду ссылку на таковую прогу.
Код:
FloorSqrt:=proc(N)
local x,x_next;
x:=iquo(N+1,2); x_next:=iquo(x^2+N,2*x);
while x>x_next do
x:=x_next; x_next:=iquo(x^2+N,2*x)
end do;
return x
end proc:
Это на Maple. Здесь iquo(m,n) --- стандартная процедура, которая находит неполное частное от деления m на n.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение02.01.2013, 18:04 
Заслуженный участник


31/12/05
1529
да какая там секунда...

http://code.activestate.com/recipes/577 ... -function/

Код:
def isqrt(x):
    if x < 0:
        raise ValueError('square root not defined for negative numbers')
    n = int(x)
    if n == 0:
        return 0
    a, b = divmod(n.bit_length(), 2)
    x = 2**(a+b)
    while True:
        y = (x + n//x)//2
        if y >= x:
            return x
        x = y

print(isqrt(int('1234567890'*30) ** 2))

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение03.01.2013, 12:12 
Заблокирован


03/09/06

188
Украина, г. Харьков
Пока не схлопотал выговор, плавно перебрался в новую тему: Улучшение способа излечения кв. корней из больших чисел!
Пожалуйста отвечайте мне в ней.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение30.01.2013, 20:00 


03/10/06
826
Возвращаясь к сообщению post570788.html?#p570788 про аналог теста Люка-Лемера для чисел вида $Q_n=\frac{3^n-1}{2}$.
Почти тот же алгоритм, но по числам Люка: $S_1 = 4$ и $S_{k+1} = S_k(S_k^2+3)$.
Остаток по модулю $Q_n$ будет давать на последнем шаге значение $S_n \equiv \frac{3+5(-1)^{\frac{n-1}{2}}}{2}\pmod{Q_n}.$.
Я так понимаю, что всевдопростые на числах Люка встречаются заметно реже. Кто знает, где посмотреть первые значения таких всевдопростых?

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение07.02.2013, 16:13 
Модератор
Аватара пользователя


11/01/06
5710
yk2ru в сообщении #677979 писал(а):
Возвращаясь к сообщению post570788.html?#p570788 про аналог теста Люка-Лемера для чисел вида $Q_n=\frac{3^n-1}{2}$.
Почти тот же алгоритм, но по числам Люка: $S_1 = 4$ и $S_{k+1} = S_k(S_k^2+3)$.
Остаток по модулю $Q_n$ будет давать на последнем шаге значение $S_n \equiv \frac{3+5(-1)^{\frac{n-1}{2}}}{2}\pmod{Q_n}.$.
Я так понимаю, что всевдопростые на числах Люка встречаются заметно реже. Кто знает, где посмотреть первые значения таких всевдопростых?

Повторю свою ремарку:
Псевдопростые здесь могут не существовать в силу разреженности $Q_n$ (то есть, эмпирическая вероятность существования псевдопростого числа мала). И тут становится особенно не важно, чем тестировать - например, тест Ферма по основанию 2 для чисел вида $Q_n$ с нечётным $n>1$ тоже, похоже, псевдопростых не дает.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение07.02.2013, 16:57 
Заслуженный участник


09/02/06
4401
Москва
Найдено 48-ое простое число Мерсена $2^{57885161}-1$.

 Профиль  
                  
 
 Re: Поиск простых чисел
Сообщение07.02.2013, 20:49 
Модератор


16/01/07
1567
Северодвинск
О, $17425170$ цифр!

А насчёт того, что оно именно сорок восьмое, как будто бы неизвестно. Если не ошибаюсь, сплошной проверки всех простых показателей до $57885161$ не было. Или я отстал от жизни, и лакуны закрыты?

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 682 ]  На страницу Пред.  1 ... 38, 39, 40, 41, 42, 43, 44 ... 46  След.

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: YandexBot [bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group