Потому что это число плюс один, с одной стороны, будет простым (либо содержащим больший простой множитель чем любое из рассмотренных чисел из
), а с другой стороны, будет больше всех простых.
Это всё верно если мы рассматриваем конечное количество перемноженных между собой простых множителей. А если мы считаем что то множество бесконечно, то для получившегося объекта-числа, или числа, за ним, с добавленной единицей, или как у меня, двойкой, это вовсе неочевидно, что тут какие то противоречия должны быть.
Это как в аналоге, с парадоксом бесконечной гостиницы. Допустим я - владелец гостиницы с бесконечных количеством номеров-комнат. Они пронумерованы натуральными числами, 1,2,3,4, ... и т.д. В какой то момент гостиница оказалась заселённой так, что во всех комнатах живут туристы.
Но тут приехал ещё один турист, и попросил и его заселить в комнату.
Так если количество номеров в гостинице конечное, то я его уже не смогу заселить (аналог рассмотрения числа - которое есть произведение конечного количества простых множителей). Но если их бесконечное количество, то вот пишут, что нет парадокса якобы -
мне надо в гостинице, "попросить подвинуться", всем жильцам. Жильцу 1-й комнаты - собрать свои вещи и переселится во 2-ю комнату, а жильца 2-й - переселится в 3-ю комнату, и так далее когда все жильцы переселятся, то я нового туриста заселю в 1-ю комнату и всем хватит места.
На мой взгляд, такое сравнение множеств, как и сравнение множеств всех натуральных чисел с множеством всех рациональных, приводит к такому же неприятию, как и можно не принимать вот это -
"Потому что это число плюс один, с одной стороны, будет простым (либо содержащим больший простой множитель чем любое из рассмотренных чисел из
), а с другой стороны, будет больше всех простых",
-- Вт окт 25, 2022 05:48:03 --Вообще, во Вселенной не может быть никаких бесконечностей, или чего-то измеряемого бесконечными числами. Бесконечности - это чисто абстракция порожденная умом математиков.
Она и приводит к парадоксам типа - множество всех натуральных чисел якобы не меньше чем множество всех рациональных. Или что если к объекту-числу, добавим единицу - получим то же число-объект (как с номерами в гостинице). Интуиция говорит об обратном,