2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки


Правила форума


Дополнение к основным правилам форума:
Любые попытки доказательства сначала должны быть явно выписаны для случая n=3



Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней. На страницу Пред.  1, 2
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение11.12.2012, 22:31 
Заслуженный участник
Аватара пользователя


23/07/05
17973
Москва
У Постникова формулы есть только для первого случая теоремы Ферма. Но книжку я всячески рекомендую.

Пусть $a$, $b$, $c$ - взаимно простые натуральные числа, являющиеся решением уравнения $x^n+y^n=z^n$, где $n$ - нечётное простое число, то есть, выполняется равенство $a^n+b^n=c^n$.
Первый случай теоремы Ферма: ни одно из чисел $a$, $b$, $c$ не делится на $n$.
Тогда существуют такие натуральные числа $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$, что $$c-b=A_1^n,\qquad\frac{c^n-b^n}{c-b}=A_2^n,$$ $$c-a=B_1^n,\qquad\frac{c^n-a^n}{c-a}=B_2^n,$$ $$a+b=C_1^n,\qquad\frac{a^n+b^n}{a+b}=C_2^n.$$ Заметим, что ни одно из чисел $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$ не делится на $n$.

Второй случай теоремы Ферма: одно из чисел $a$, $b$, $c$ делится на $n$.
1) Пусть $a$ делится на $n$. Тогда существуют такие натуральные числа $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$, что $$c-b=\frac{A_1^n}n,\qquad\frac{c^n-b^n}{c-b}=n\cdot A_2^n,$$ $$c-a=B_1^n,\qquad\frac{c^n-a^n}{c-a}=B_2^n,$$ $$a+b=C_1^n,\qquad\frac{a^n+b^n}{a+b}=C_2^n.$$ Заметим, что только $A_1$ делится на $n$.
2) Пусть $b$ делится на $n$. Тогда существуют такие натуральные числа $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$, что $$c-b=A_1^n,\qquad\frac{c^n-b^n}{c-b}=A_2^n,$$ $$c-a=\frac{B_1^n}n,\qquad\frac{c^n-a^n}{c-a}=n\cdot B_2^n,$$ $$a+b=C_1^n,\qquad\frac{a^n+b^n}{a+b}=C_2^n.$$ Заметим, что только $B_1$ делится на $n$.
3) Пусть $c$ делится на $n$. Тогда существуют такие натуральные числа $A_1$, $A_2$, $B_1$, $B_2$, $C_1$, $C_2$, что $$c-b=A_1^n,\qquad\frac{c^n-b^n}{c-b}=A_2^n,$$ $$c-a=B_1^n,\qquad\frac{c^n-a^n}{c-a}=B_2^n,$$ $$a+b=\frac{C_1^n}n,\qquad\frac{a^n+b^n}{a+b}=n\cdot C_2^n.$$ Заметим, что только $C_1$ делится на $n$.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 00:54 
Заблокирован по собственному желанию
Аватара пользователя


18/05/09
3612
 ! 
vasili в сообщении #656638 писал(а):
Уважаемый dennady1!
vasili в сообщении #656983 писал(а):
gehhady!

vasili,

предупреждение за искажение ника пользователя!

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 11:55 


14/11/12
23
Рассмотрим уравнение (11).
Уравнение (11) имеет решение (тема: уравнение (11) не имеет решения в целых числах):

$y=l+(l/2)^{1/3} \cdot (\sqrt[3]{c+h}+\sqrt[3]{c-h}), \qquad l \geq 1\qquad$ (1)

$c=3(l+1), \qquad h=\sqrt{9l^2-14l+9}, \qquad c>h>0. \qquad$ (2)

При условии $l=1$ , решение (1) есть иррациональное число: $y=1+\sqrt[3]{2}+\sqrt[3]{4}$.
Рассмотрим (1) при условии $l \geq 2$.
1. $l=2n+1, \qquad n \geq 1$.

$y=2n+1+\sqrt[3]{c_{1}+(2n+1)h_{1}}+\sqrt[3]{c_{1}-(2n+1)h_{1}} \qquad$ (3)

$c_{1}=3(n+1)(2n+1), \qquad h_{1}=\sqrt{9n^2+2n+1} \qquad$ (4)

2. $l=2n, \qquad n \geq 1$.

$y=2n+\sqrt[3]{c_{2}+nh_{2}}+\sqrt[3]{c_{2}-nh_{2}} \qquad$ (5)

$c_{2}=3n(2n+1), \qquad h_{2}=\sqrt{36n^2-28n+9} \qquad$ (6)

Рассмотрим уравнение:
$9n^2+2n-(h_{1}^{2}-1)=0, \qquad h_{1}>1 \qquad$ (7)

Найдем целые значения числа $n$, при которых $h_1$ целое число.
Уравнение (7) имеет одно положительное решение:

$9n=\sqrt{9h_{1}^{2}-8}-1 \qquad$ (8)

Рассмотрим равенство: $(3h_1)^2-d_{1}^{2}=8 \qquad$ (9)

$d_1$ - целое число. Если $h_1$ целое число, то $(3h_{1}, d_{1})$ целые числа одной чётности. В этом случае, уравнение (9) можно представить в виде:

$m^2-k^2=2, \qquad m>k\geq 1 \qquad$ (10)

Для целых чисел $(m, n)$, равенство (10) невыполнимо. Итак, для целого числа $n \geq 1, \qquad h_1$ не является целым числом. Согласно (4), $h_1$ иррациональное число.
Рассмотрим уравнение:

$36n^2-28n-(h_{2}^{2}-9)=0, \qquad h_{2}>3 \qquad$ (11)

Найдем целые значения числа $n$, при которых $h_2$ целое число.
Уравнение (11) имеет одно положительное решение:

$18n=\sqrt{9h_{2}^{2}-32}+7 \qquad$ (12)

Рассмотрим равенство: $(3h_2)^2-d_{2}^{2}=32 \qquad$ (13)

$d_2$ - целое число. Если $h_2$ целое число, то $(3h_{2}, d_{2})$ целые числа одной чётности. В этом случае, уравнение (13) можно представить в виде:

$m^2-k^2=8, \qquad m>k\geq 1 \qquad$ (14)

Согласно(9), для целых чисел $(m, n)$, равенство (14) невыполнимо. Итак, для целого числа $n \geq 1, \qquad h_2$ не является целым числом. Согласно (6), $h_2$ иррациональное число.
Введем обозначения: $N_{1}=9n^2+2n+1, \qquad N_{2}=36n^2-28n+9 \qquad$ (15)

Для целого числа $n \geq 1$, $(N_1, N_2)$ не являются полными квадратами целых чисел. Такие числа можно единственным образом представить в виде:

$N_1=m_{1}^{2} \cdot a,\qquad m_1 \geq 1;\qquad N_2=m_{2}^{2} \cdot b,\qquad m_2 \geq 1$ (16)

$(m_1, m_2)$ - целые числа, $(a, b)$ - простые числа. В общем случае, $(a, b)$ это произведения простых чисел не равных друг другу:

$a=a_1 \cdots a_i \cdots a_K, \qquad a_{i+1}>a_{i}, \qquad i=(1, K)$

$b=b_1 \cdots b_j \cdots b_M, \qquad b_{j+1}>b_{j}, \qquad j=(1, M)$

$(a_i, b_j)$ простые числа, $a_1 \geq2, \qquad b_1 \geq 2$.
С учётом (15) и (16), $(h_1, h_2)$ равны:

$h_1=m_1 \cdot \sqrt{a}, \qquad h_2=m_2 \cdot \sqrt{b} \qquad$ (17)

Согласно (17), $(h_1, h_2)$ иррациональные числа, по определению. С учётом (17), решения (3) и (5) равны:

$y=2n+1+\sqrt[3]{u_1}+\sqrt[3]{v_1}, \qquad u_1>v_1>0 \qquad$ (18)

$u_1=c_1+(2n+1)m_{1}\sqrt{a}, \qquad v_1=c_1-(2n+1)m_{1}\sqrt{a} \qquad$ (19)

$y=2n+\sqrt[3]{u_2}+\sqrt[3]{v_2}, \qquad u_2>v_2>0 \qquad$ (20)

$u_2=c_2+nm_{2}\sqrt{b}, \qquad v_2=c_2-nm_{2}\sqrt{b} \qquad$ (21)

Согласно (19) и (21), $(u_i, v_i), i=1,2$ есть иррациональные алгебраические выражения, по определению. В этом случае, $(\sqrt[3]{u_i}, \sqrt[3]{v_i})$ это радикалы из иррациональных выражений. Следовательно, эти радикалы могут быть только иррациональными числами. Итак, правые части решений (18) и (20) являются иррациональными алгебраическими выражениями, по определению.
И последнее, если допустить, что правые части (18) и (20) есть целые числа, то, следовательно, теорема Ферма неверна.

-- 12.12.2012, 11:07 --

Someone!
Спасибо!
Книгу я уже скачал.
Итак, имеем формулы. Что дальше с ними делать. Фактически исходное уравнение при данных условиях представлено в ином виде и более сложном.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 12:50 
Заслуженный участник


20/12/10
8858
gennady в сообщении #657388 писал(а):
Итак, правые части решений (18) и (20) являются иррациональными алгебраическими выражениями, по определению.
По какому определению? Видимо, по этому определению и выражение$$\sqrt[3]{45+29\sqrt{2}}+\sqrt[3]{45-29\sqrt{2}}$$тоже будет иррациональным алгебраическим. Однако это ему совершенно не мешает иметь очень даже рациональное значение $6$.
gennady в сообщении #657388 писал(а):
И последнее, если допустить, что правые части (18) и (20) есть целые числа, то, следовательно, теорема Ферма неверна.
Но в процессе доказательства теоремы Ферма (а Вы как раз ровно этим здесь и занимаетесь) нельзя опираться на такой аргумент --- апеллировать к тому, что эта теорема не может быть неверной. Неужели Вы и этого не понимаете?

В общем, читайте-ка Вы лучше книжки, просвещайтесь, всё пользы больше будет, чем от писания бредовых текстов. Одну хорошую книгу Вам уже присоветовали, я от себя добавлю ещё одну: П. Рибенбойм "Последняя теорема Ферма для любителей", М.: Мир, 2003.
gennady в сообщении #657388 писал(а):
Фактически исходное уравнение при данных условиях представлено в ином виде и более сложном.
Может, это потому, что на самом деле задача не такая простая, как Вам представляется?

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 17:41 


14/11/12
23
1. Покажите, как это у Вас получилось:

$\sqrt[3]{45+29 \sqrt{2}}+\sqrt[3]{45-29 \sqrt{2}}=6$

2. Если $c_1=45$ , тогда $n=2$, $h_1=\sqrt{41}$ и получаем радикалы:

$\sqrt[3]{45+5 \sqrt{41}}+\sqrt[3]{45-5 \sqrt{41}}$

3. Если $c_2=45$ , тогда $n=5/2$

4. Не относитесь слишком серьезно к последнему аргументу. Математики тоже шутят.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 18:20 
Заслуженный участник


04/05/09
4582
gennady в сообщении #657537 писал(а):
1. Покажите, как это у Вас получилось:

$\sqrt[3]{45+29 \sqrt{2}}+\sqrt[3]{45-29 \sqrt{2}}=6$
Посчитайте на калькуляторе.
А прикол в том, что доказать, что это выражение (по вашему определению - иррациональное алгебраическое), является целым числом, насколько я знаю, можно только построив соответствющее кубическое уравнение, и подставив предполагаемый корень.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 19:42 


14/11/12
23
Это не ответ.
Вы утверждаете, что сумма радикалов равна 6, а доказать не можете.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 19:45 
Заслуженный участник


04/05/09
4582
gennady в сообщении #657612 писал(а):
Это не ответ.
Вы утверждаете, что сумма радикалов равна 6, а доказать не можете.
Могу.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 19:49 
Заслуженный участник


20/12/10
8858
gennady в сообщении #657537 писал(а):
Математики тоже шутят.
Так это математики, им можно. Если бы Вы были математиком, мне бы не пришлось комментировать ту совершенно одинаковую чушь, которую Вы по нескольку раз переписываете в разных обозначениях.

-- Ср дек 12, 2012 23:53:37 --

gennady в сообщении #657612 писал(а):
а доказать не можете
Опять шутите? $\sqrt[3]{45 \pm 29\sqrt{2}}=3 \pm \sqrt{2}$, что проверяется возведением в куб.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 20:47 


31/12/10
1555
После возведения в куб всего выражения получим
кубическое уравнение
$x^3-21x-90=0$
Будем иметь три корня: $x_1=6$ и два комплексных.

 Профиль  
                  
 
 Re: Доказательство теоремы Ферма для степени три
Сообщение12.12.2012, 21:45 
Заблокирован по собственному желанию
Аватара пользователя


18/05/09
3612
gennady в сообщении #657612 писал(а):
Вы утверждаете, что сумма радикалов равна 6, а доказать не можете.
 !  gennady,

доказать это могу даже я, простой модератор данного форума. Потому что я хорошо учился в школе и почему-то сохранил хапнутые там знания.
А для Вас, оказывается, такая (общеизвестная) ерунда --- великое откровение (или маленькая неожиданность).
На основании этого наблюдения, и доверяясь комментариям участников, я закрываю Ваше доказательство Ваши измышления, как исходящие от автора, элементарно некомпетентного в деле, за которое он взялся.

 Профиль  
                  
Показать сообщения за:  Поле сортировки  
Начать новую тему Эта тема закрыта, вы не можете редактировать и оставлять сообщения в ней.  [ Сообщений: 26 ]  На страницу Пред.  1, 2

Модераторы: Модераторы Математики, Супермодераторы



Кто сейчас на конференции

Сейчас этот форум просматривают: Google [Bot]


Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Найти:
Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group