Задачу можно решать по-разному, лишь бы ответ был одинаков.
Например: кладём две тетради в линейку в первую стопку и добиваем её тетрадями в клетку, да ещё просто кладём четыре тетради в первую стопку. Делим на количество вариантов положить 4 любых тетради в первую стопку. Получаем

, что чудесным образом совпадает с

, что может быть получено другим рассуждением.
Если случайным образом расставлять индексы в биномиальных коэффициентах, толку не будет. Надо побольше порешать простых задач. Потом придёт понимание того, например, какие события в первой задаче дополняют друг друга.
А что, можно выбрать нужным образом только одну стопку? Вы тему читали вообще?