Ales
Объясните мне вообще, зачем бы Галлею выдумывать Аполлония Пергского и писать за него книги?
Наверное, чтобы опубликовать свои работы.
В то время очень интересовались древними книгами, а современные исследования были не так интересны.
А может быть для обоснования новой теории всемирного тяготения.
Она ведь тогда была совсем не популярна.
Вот что написано у Шаля:
Галлей (1656 — 1742). Знаменитый астрономъ Галлей, обладавшій обширными свѣдѣніями и отличавшійся особенно глубокимъ знаніемъ геометріи греческой школы, соорудилъ превосходный памятникъ древней наукѣ своими переводами важнѣйшихъ сочиненій древнихъ геометровъ, болѣе вѣрными, чѣмъ всѣ предшествовавшіе. Особенно замѣчательно великолѣпное изданіе коническихъ сѣченій Аполлонія, гдѣ съ замѣчательнымъ талантомъ возстановлена 8-я книга, текстъ которой до сихъ поръ не былъ еще найденъ. Продолженіе составляютъ двѣ книги Серена о сѣченіяхъ конуса и цилиндра.
Галлею же мы обязаны переводомъ съ арабской рукописи неизвѣстнаго до тѣхъ поръ сочиненія De sectione rationis и возстановленіемъ, на основаніи указаній Паппа, трактата De sectione spatii.
Предметъ этихъ двухъ сочиненій состоялъ, какъ извѣстно, въ проведеніи черезъ точку, взятую внѣ двухъ линій, такой сѣкущей, которая на этихъ прямыхъ, начиная отъ двухъ постоянныхъ точекъ, образовала бы отрѣзки, имѣющіе въ первомъ случаѣ данное отношеніе, a во второмъ — данное произведеніе.
Каждый изъ этихъ вопросовъ допускаетъ вообще два рѣшенія и слѣдовательно въ анализѣ приводился бы къ уравненію второй степени. Интересно видѣть, съ какимъ искуствомъ Аполлоній рѣшаетъ первый вопросъ помощію средней пропорціональной. Его геометрическія соображенія соотвѣтствуютъ дѣйствіямъ, которыя мы употребили бы для уничтоженія втораго члена въ квадратномъ уравненіи.
Ньютонъ, питавшій уваженіе къ геометріи древнихъ, особенно отличалъ этотъ трактатъ Аполлонія. „Я слышалъ не разъ, говоритъ ученый Пембертонъ[1], что онъ одобрялъ намѣреніе Гуго Омерика возстановить древній анализъ и чрезвычайно [180]хвалилъ книгу Аполлонія De sectione rationis, — книгу, которая болѣе всѣхъ твореній древности раскрываетъ передъ нами сущность этого анализа“.
Переводъ Галлея обогащенъ многими примѣчаніями; въ нихъ даны общія и изящныя построенія, обнимающія собою большинство частныхъ случаевъ задачи, разсматриваемыхъ Аполлоніемъ отдѣльно и весьма подробно, такъ какъ они имѣли назначеніе служить формулами, которыя всякій геометръ долженъ былъ имѣть подъ руками при рѣшеніи задачъ. Изъ одного примѣчанія видно, что самый общій случай приводится къ проведенію черезъ данную точку дкухъ касательныхъ къ параболѣ, опредѣляемой вполнѣ посредствомъ данныхъ вопроса. Это счастливое замѣчаніе даетъ средство для яснаго и простаго изслѣдованія всѣхъ частныхъ случаевъ задачи; оно привело Галлея къ различнымъ свойствамъ касательныхъ къ параболѣ, между прочимъ къ слѣдующему:
Если около параболы описанъ четыреугольникъ, то всякая касательная дѣлитъ противоположныя стороны его на части пропорціональныя.
Всѣ подобныя предложенія суть только частные случаи одного общаго предложенія, названнаго нами ангармоническимъ свойствомъ касательныхъ коническаго сѣченія. (См. Примѣчаніе XVI).
Галлей не зналъ ни слова по арабски, когда любовь къ геометріи заставила его предпринять переводъ рукописи de sectione rationis. Въ предисловіи онъ разсказываетъ исторію этой рукописи, остававшейся въ теченія многихъ лѣтъ забытою въ Бодлейенской библіотекѣ. Онъ сожалѣетъ объ утратѣ множества другихъ сочиненій греческой школы и не сомнѣвается, что многія изъ нихъ могли бы еще быть найдены, если бы съ большимъ стараніемъ позаботились объ этомъ. По этому поводу онъ обращается съ мольбою ко всѣмъ ученымъ, которымъ доступны библіотеки, обладающія рукописями. Мы считаемъ долгомъ привести здѣсь эти мысли и желанія знаменитаго Галлея, которыя должны имѣть важное значеніе въ глазахъ всѣхъ просвѣщенныхъ людей, имѣющихъ [181]возможность какимъ бы то ни было образомъ принести пользу математическимъ наукамъ.
Галлеемъ было приготовлено изданіе сферики Менелая въ трехъ книгахъ, свѣренное съ еврейскою рукописью. Но оно появилось только въ 1758 году, благодаря стараніямъ друга Галлея доктора Костарда, автора исторіи астрономіи.
Съ глубокимъ знаніемъ геометріи древнихъ Галлей соединялъ полное пониманіе способа Декарта. Онъ пользовался имъ преимущественно для усовершенствованія пріемовъ построенія уравненій третьей и четвертой степени, употребляя для этой цѣли какую нибудь данную параболу и кругъ[2].
Его изданія сочиненій Аполлонія, Серена и Менелая весьма высоко цѣнятся любителями геометріи[3]; ихъ однихъ было бы достаточно, чтобы дать Галлею почетное мѣсто въ ряду ученыхъ, способствовавшихъ развитію математическихъ наукъ, если бы труды по астрономіи безъ того не ставили его на ряду съ знаменитѣйшими людьми той эпохи: Доминикомъ Кассини, Гюйгенсомъ и Ньютономъ.
-- Пн июн 11, 2012 13:54:33 --Ales
А получится у Вас добавить в свою схему, такого, почти бога?: Марк Витрувий Поллион
Это будет уже совсем далеко от математики - не в этой теме.
Итак уже слишком отклонились в вопросы ревизии истории.
А тема была заведена для поиска аналогов метода Данделена.
Цель достигнута: выяснилось, что аналоги невозможны.