второе (т.е. первое, что пришло в голову) и есть использование геометрического определения вероятности,
Ни разу. Это тупо выписывание функции распределения в виде двойного интеграла от совместной плотности по полуплоскости, а с учётом кусочной постоянности этой плотности тот интеграл и будет пропорционален соответствующей площади.
области
,
Не уверен, что это можно называть "областью" (во всяком случае, в приличном обществе).
следует помнить, откуда взялась формула свёртки.
Вовсе нет. Если уж формула свёртки известна, то вполне достаточно того, что в данном конкретном случае под интегралом стоит кусочно-постоянная функция, причём с одной и той же константой (неважно, какой конкретно). Больше ничего не нужно.