Задача о трисекции угла, как и многие другие задачи, имеет две ипостаси - практическую и научно-спортивную. В момент постановки задача была сугубо прикладная, в связи с потребностями землемерия, архитектуры, навигации и т.п., а требование "циркулем и линейкой" было обусловлено тем, что проверить эти инструменты наиболее просто - взглянув вдоль ребра линейки и убедившись, что, начертив циркулем окружность, мы вернулись в исходную точку. Когда после многочисленных неудачных попыток решить только этими инструментами пришли к возможности решения этой задачи с помощью дополнительных инструментов - практическая часть была закрыта, хотя могли быть проблемы люфта в механизме вычерчивания спирали Архимеда, точности совмещения засечек на линейке и т.п. источники погрешностей, но необходимая для приложений точность уже обеспечивалась. Осталась "научно-спортивная часть" - определить границы возможного для человеческого разума и продемонстрировать свои способности достичь этих границ. Понятно, что здесь требовалось соблюсти "условия соревнований" - использовать лишь циркуль и линейку; решение трисекции угла неоговоренными инструментами в этом смысле столь же бесполезно, как побитие рекорда по бегу мотоциклистом.
В ходе решения выяснилась связь задачи с решением определённых алгебраических уравнений, и была доказана её неразрешимость. Возможность построить угол, равный трети какого-то специально подобранного, этому не противоречит, противоречит лишь возможность построить так треть от любого заданного угла. Контрпримером, который бы заставил признать доказательство ошибочным, могло бы стать построение трисекции угла, для которого доказательство Ванцеля утверждает невозможность таковой, например, построение угла
. Однако опровержением будет не приближённая трисекция, пусть и с высокой точностью, а лишь точная. Приближённая трисекция циркулем и линейкой производится с любой желаемой точностью
. Требуется, однако, лишь точная - иначе опровержения не будет. Точно так же не опровергает неразрешимость трисекция с инструментами не из числа указанных в условии - тогда Вы решили задачу, но совсем иную задачу. И Вам нельзя будет даже утешиться, что решённая Вами иная задача имеет практическую пользу - с практической точностью она была решена 2000 лет назад.
Насколько я понял, у Вас два разных построения (или я понял неверно?) В одном Вы получает угол, приближённо равный
. Но это не опровержение невозможности так построить его точно. В другом у Вас употребляется "линия Архимеда", то есть упомянутая линейка с засечками. Здесь, возможно, трисекция и точна (хотя для более уверенного суждения я хотел бы видеть Ваше построение изложенным подробнее и аккуратнее), но это так же мало сходно с решением великой задачи, как высадка на гору с вертолёта с альпинистским восхождением.