Прочитайте ещё раз, внимательно:
Это да, но дальше вы говорите «не зависимо от интерпретации как линейных операторов или тензоров», отчего я подумал, что вы не совсем отбрасываете интерпретации — и тогда там получается тот нюанс — да и в любом случае их нельзя совсем отбросить. Можно говорить, что матричное умножение, вылезшее из свёртки тензоров, взято с потолка и ни с чем не связано, но оно не взято с потолка и связано.
Как раз будет, но более сложная, учитывающая разные пространства. Такая как между стрелками в категориях.
Я имел в виду случай когда

и

, и ни

, ни

. Во всех остальных одна из композиций конечно же существует.
А они не что-то. Они просто матрицы.
Как я уже говорил, минус в том, что на них слишком много структур, он в том и остаётся и останется. Я точно так же буду катить бочку на неумеренное пользование

в каких-то местах.
А, ну это типичный эффект "никто не возразил => я прав".
«Прав в некоторой разумной степени». А если совсем во всём сомневаться и ничего не предполагать до того как получишь опровержение, жить невозможно. Почему вы мимо тех постов прошли, я не знаю.
Ну например, матрицы (размера

) очень хорошо моделируют комплексные числа и кватернионы.
Ну это просто изоморфизм алгебры некоторых матриц, а лучше линейных операторов, и этих алгебр. Почему здесь нужно видеть что-то ещё?
Или (матрицы специального вида) - перестановки.
Линейные представления групп, так что опять операторы.
Вы его с

не перепутали?
Не, иначе умножение матриц не будет соответствовать композиции отношений.