2
CubicЦитата:
как может существовать матрица такого линейного отображения, даже если размерности матриц не сходятся
Да существует она... Просто сложность в том, что обычно-то мы имеем некоторый линейный оператор в пространстве векторов, действуем им на базис, получаем матрицу оператора, т.е. двумерную таблицу скалярных чисел. Грубо говоря так. Теперь полученной матрицей
действуем на вектор, получаем вектор. У вас другая ситуация -- работа ведется в линейном пространстве матриц, или, что тоже самое,
в пространстве соответствующих им линейных операторов, я-то не спец., то получается, что матрица интересующего отображения должна состоять уже не из чисел, а из векторов. Как таким недоделанным тензором действовать на конкретную матрицу меняя её размеры -- плохо себе представляю (там все-равно лишний индекс вылазит и приходится его как-нибудь сворачивать). :) Но это для случая

. Для

см. посты выше (правда там осталась неясность с левоассоциативным порядком перемножения). Для

задача решена вплоть до выписывания конкретных матриц, см. выше.