Могу предложить такую модель «мужчины-кубика».
Возьмем тетраэдр, три стороны которого сделаны из красного стекла, одна - из синего, внутри игральная кость. Бросаем тетраэдр, красная грань выпадает с вероятностью

, это означает «мужчина говорит правду», синяя с вероятностью

, это означает «мужчина лжет». Грани кубика выпадают с вероятностью

, независимо от выпавшей на тетраэдре грани.
Определим «алгоритм» ответа мужчины следующим образом.
Если выпала красная грань - произносится число

равное числу выпавшему на кубике

.
Если выпала синяя грань - произносится число

не равное числу

выпавшему на кубике, т.е. число

. Распределение вероятностей для конкретных чисел из множества

в данном случае неизвестно и может быть любым, т.к. "функция отрицания" неизвестна. Можно задать такой алгоритм: выбирается грань, противоположная выпавшей; можно такой: выбирается наибольшее число на одной из боковых граней кубика; можно такой: из корзины с пяти шарами, пронумерованными числами из множества

случайным образом вынимается один шар. "Функция выбора" может быть любой.
Суть в том, что вероятность произнесения мужчиной любого числа из множества

останется равновероятной независимо от того, что выпало на кубике, независимо от того, врет он или говорит правду, и не зависимо от "внутреннего распределения" вероятностей выбора мужчиной каждого числа из множества

, если он решил солгать.
В качестве эксперимента я набросал программку с несколькими "функциями отрицания" и прогнав их на 1000 "бросков" получил совершенно нормальное равновероятное распределение ответов мужчины на множестве

не зависимо от "функции выбора".
Теперь по сути вопроса.
Где-то на этом форуме обсуждалась задача о двух монетах. Спрашивалось какова вероятность, что выпало две решки, если одна решка уже выпала ? Ответ сводился к следующему. Если одна решка уже выпала, то вероятность того, что на второй монете выпала решка, равна

, а вероятность того, что на обоих выпала решка равна

.
Так и здесь. Допустим известно выпавшее на кубике число, или известно, что сказал мужчина. Что спрашивается ? Если, какова вероятность, что "выпало 6" или "мужчина сказал 6", то вероятность равна

. Если же спрашивается, какова вероятность, что в обоих случаях "выпало" одно и то же число, то вероятность равна

.
Есть мужчина, который говорит правду в 3-х случаях из 4-х.
Бросаем 6-ти гранную игральную кость. Мужчина говорит что выпало 6.
Какова вероятность что выпало дейсвительно 6 ?
Мой ответ

, т.к. стремление мужчины говорить правду в

случаев не окажет никакого волшебного воздействия на выпадение шестерки на игральной кости.