Ничего, к сожалению, добавить не могу. Вы спросили - я ответил. Дальше соображайте сами.
Вопрос - ответ.
Вы же видите, что вопрос я поставила, очень и очень дилетантски. Примите, пожалуйста, это во внимание.
Я попробую, еще так подойти к тому, что меня интересует. Допустим, что есть какое-то двумерное риманово пространство, отличающееся от сферы тем, что в нем не через любые две точки можно провести геодезическую. Что в геометрии этого пространства должно быть "не так" по сравнению с геометрией сферы?
-- Пн мар 07, 2011 10:49:39 --Извините. но геодезическая неполнота требует того, что мы имеем. Теорему Хопфа-Ринова пока никто не отменял.
Ага, я, кажется, поняла - сфера, это полное риманово многообразие, а та поверхность, о которой я говорю, неполное риманово многообразие. Видимо так?
Скорее всего, Вы ответите утвердительно. Исходя из этого предположения, я спрошу, еще так. Допустим, что для этой поверхности известен метрический тензор и все, что из него проистекает. Где, во всей этой информации, проявится то, что поверхность не представляет собой полного риманового многообразия? В каком "месте", это "проглянет"?