Первая формула правильна. Если теперь записать где уже плотность энергии а не сама энергия, то объем сократится и получится закон сохранения энергии в дифференциальной форме. Точнее даже не обязательно энергии а любой скалярной сохраняющейся величины (например заряда). Смысл букв-то можно и заменить, существо дела от этого не поменяется. Вторую формулу я просто не понял. Что такое ?
А да, забыл написать.
Под p я подразумевал плтность энергии, раз мы E делили на объём, но думаю я неправильный шаг сделал, потому что никакого уравнения не получается...сейчас подумаю.
Поток вектора из маленького объема ( в смысле сквозь поверхность этого объема) пропорционален этому объему. Коэффициент пропорциональности называется дивергенцией этого вектора. Еще говорят что дивергенция это плотность источников данного векторного поля. Но это менее конкретно. Само слово "дивергенция" переводится как "расхождение".
Допустим у нас дан поток воздуха, и плотность воздуха в точке( по аналогии с мгновенным ускорением) и будет дивергенция?...А нет, неправильно рассуждаю.Тогда, если моя мысль верна, получается, что в потоке воды в каждой точке дивергенция одинаковая, так как среда практически несжимаемая. Тогда как представить?
В декартовых координатах дивергенцию вектора, скажем , можно посчитать так:Эта формула легко выводится если рассмотреть маленький кубик и выразить поток сквозь верхнюю грань через поток сквозь нижнюю и производную. А потом тоже самое для еще двух пар граней кубика.
эээ...а как выразить поток скозь верхнюю через нижнюю и производную?
производная, вмсмысле производная потока?