Как бы это Вам ээээ объяснить.
Спасибо, конечно, что Вы мне напомнили прото, что есть справочники и про то, что читают в урчп на втором курсе. Но вообще-то это немного не по делу.
Не за что. Иногда можно забыть о какой-то простой возможности и потратить много лишнего времени.
Цитата:
Теоремы существования, и в частности, резултаты Петровского, формулируются в определенных классах функций, в частности при наличии гран. условий. То, что мы здесь обсуждаем к тем стандартным постановкам отношения не имеет.
Никаких граничных условий нет. Речь идет о локальной гладкости решений. Утверждается, что любое решение параболического уравнения (при соотв. условиях на коэффициенты) локально аналитично по
и бесконечно дифференцируемо по
. Это аналог локальной аналитичности любого решения равномерно эллиптического уравнения с аналитическими коэффициентами. Причем это верно и для квазилинейных уравнений. Я думаю, что и для квазилинейных параболических уравнений это также давно доказано.
Цитата:
Вот например, задача
не имеет решений в
, хотя она и равномерно параболическая при
. И результаты Петровского тут ни при чем.
В качастве простого и полезного упражнения возьмите справочник, найдите явное решение этой задачи и убедитесь, что оно аналитическое аж по обоим переменным в окрестности нуля.
Цитата:
А задача (как Вы говорите обратно параболическая)
имеет решения в
. И эти решения даже и по
будут аналитичны в некотором уголке
. Думаю, что доказательство этого утверждения будет полезным для Вас упражнением.
То же самое.
Цитата:
ps
Нелинейность не должна влиять на аналитичность.
В таком случае Вы можете получить миллион долларов. Ибо именно нелинйность мешает решить задачу тысячелетия. (Navier-Stokes eq.)
Речь шла об одном квазилинейном параболическом уравнении. Может, для вас это новость, но не все свойства решений одного уранения второго порядка остаются справедливыми для уравнений высокого порядка и систем. А Навье-Стокс - это система и даже не параболическая.