2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3, 4  След.
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 16:08 
gris
По-моему, Вы не правы.
"Раздувая" многогранник (без искажения геометрической формы), Вы получаете параллельное перемещение и одновременное увеличение размеров правильных многоугольников граней (в этом плане, ромбододекаэдр не годится).
В тот момент, когда сечение шара плоскостью грани станет окружностью, вписанной в грань, то будет выполнено условие топик-стартера.
Т.к. центры сферы и многогранника, а также центры многоугольника и сечения шара на всем протяжении "раздувания" совпадают, то каких-либо искажений и смещений быть не может.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 16:19 
Аватара пользователя
Вот уж отнюдь. Я имел в виду как раз раздувание с нарушением формы. Впрочем, может быть я запутался? И автор имеет в виду совсем другое?
Я понял, что он хочет разбить поверхность сферы на равные круги, числом более двух, а я никак не могу себе этого представить. Этого не может быть, вопиют моё геометрическое воображение и апельсин, над которым я поставил опыт.
Если слова "покрывают всю поверхность сферы" означают нечто другое, например, что ни одну окружность нельзя подвинуть в сторону при неподвижности других, что они составляют прочный каркас, то это пусть автор скажет точно и формализованно.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 17:03 
gris
А если на сфере построить правильный тетраэдр (четыре одинаковых сферических треугольника) и вписать в каждый треугольник по окружности. Получим 4 круга на сфере.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 17:05 
Аватара пользователя
Они не будут покрывать всю поверхность сферы.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 19:00 
http://scriptures.ru/india/tamilnadu/au ... lle007.htm - прямо Ауровиль какой-то хочется ТС сотворить. Но тогда надо определяться либо покрывают круги сферу, либо касаются в одной точке.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 21:17 
Возьмём два соприкасающихся круга. В окрестности точки касания между ними есть зазор, куда ни один из оставшихся не влезет (если кругов конечное число). Значит этот зазор останентся непокрытам. Странно что автору вообще такого захотелось :? "Они не знают чего они хочут"...

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 21:18 
gris в сообщении #282932 писал(а):
Вот уж отнюдь. Я имел в виду как раз раздувание с нарушением формы. Впрочем, может быть я запутался? И автор имеет в виду совсем другое?
Я понял, что он хочет разбить поверхность сферы на равные круги, числом более двух, а я никак не могу себе этого представить. Этого не может быть, вопиют моё геометрическое воображение и апельсин, над которым я поставил опыт.
Если слова "покрывают всю поверхность сферы" означают нечто другое, например, что ни одну окружность нельзя подвинуть в сторону при неподвижности других, что они составляют прочный каркас, то это пусть автор скажет точно и формализованно.

Как я понял, автора интересует, можно ли в шаре выделить $n$ одинаковых шаровых сегмента, касающихся друг друга в одной точке? И чему равно минимальное значение $n$?
Т.е. я исхожу из Вашей последней версии вопроса.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 21:30 
Аватара пользователя
Батороев, в таком случае n любое число. Например, 2. Это уже предлагалось. Нет, тут всё сложнее. Тут надо, чтобы не знаю что.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 21:39 
$n=2$ автор уже ранее опротестовал. Он заявил, что касание должно быть в одной точке.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 21:42 
Аватара пользователя
А можно просто нарисовать круг, а рядом с ним такой же. Чтобы они имели только одну общую точку.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 21:47 
Наверное необходимо добавить предлагавшееся Вами ранее ключевое слово "несдвигаемые".
Впрочем, чего мы маемся? Автор, поди, давно спит. :D

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 23:01 
Уважаемые господа! Как я понял из новых сообщений, ещё не все до конца поняли что требуется сделать. А потому, я предлагаю для лучшего понимания условия задачи всё тоже самое проделать не в объёме, а на плоскости. Для этого возьмём простой круг ( окружность ) и попробуем вписать в него две, три, может быть четыре окружности ( и так далее ), которые соприкасаются между собой и все вместе соприкасаются с общим для них кругом, в который все они вписаны.

P.S. Кстати, фото http://scriptures.ru/india/tamilnadu/au ... lle007.htm уже отражает то, что требуется по условию задачи, за исключением того, что круги на сфере там НЕ соприкасаются между собой. Если даже они бы и соприкасались, зазоры всё равно будут иметь место, но это обстоятельство нас уже НЕ ДОЛЖНО ВОЛНОВАТЬ. Главное, чтобы эти круги также как на снимке равномерно покрывали всю площадь сферы, а не находились только лишь на какой-то её части, как кто-то уже здесь предлагал.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение23.01.2010, 23:16 
Тогда $n=4$. Центры в вершинах правильного тетраэтдра, вписанного в сферу. (раздутие тетраэдра, если я правильно понял предыдущие сообщения)

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение24.01.2010, 09:59 
Аватара пользователя
Вообще если речь зашла о мячах, то стоит взглянуть на адидасный европас Чемпионата Европы 2008.
Там по вершинам додекаэдра расположены 12 чёрных кругов. Они, правда, недостаточно большие, но дело в том, что обычно рисунок на мяче формируется по деталям выкройки. А эти детали соединены швами. А угол между швами в точке стыка должен быть по возможности тупым, иначе катальные и аэродинамические свойства мяча не будут удовлетворять взыскательным требованиям современных футболистов, которые требуют, чтобы мяч сам залетал в ворота противника.
Выкройки с криволинейными краями сложнее обрабатывать, но при этом достигается большая прочность покрышки. Если покрышку изготовлять из соприкасающихся окружностей и треугольных вставок, то углы между швами будут достигать нуля градусов, что приведёт к появлению на поверхности мяча особых точек.
Если речь идёт о нанесении рисунка красками на поверхность мяча, то, разумеется, все вышеприведённые соображения не актуальны, тем более, что я насчёт швов выдумал, если честно. Но на мяче чемпионата мира 1990 года нанесён рисунок по стандартному футбольному мячу именно в виде 12 соприкасающихся окружностей.
Что касается 4-х кругов по тетраэдру, то обратите внимание на Ябулани - официальный мяч предстоящего чемпионата мира.
Вам бы подойти к стадиону после матча и поинтересоваться проблематикой у выходящих знатоков футбола.

 
 
 
 Re: Окружности на поверхности сферы.
Сообщение24.01.2010, 10:31 
Да уж... все таки "покрывают" (но с зазорами) и касаются в одной точке. Действительно ли $n$ любое? Три не получится и ряд других чисел наверное выпадет.

Фото мячиков

http://www.gazeta.lv/story/5129.html - Европас
http://www.soccer.ru/news/146076.shtml - Ябулани

 
 
 [ Сообщений: 57 ]  На страницу Пред.  1, 2, 3, 4  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group