2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




 
 помогите решить дифур
Сообщение26.12.2008, 01:05 
$2p-y(y-2px)^2=0$
где $p=dy/dx$;
решал по всякому ничего путного не выходит, есть предположение что оно типа обобщенного однородного может с какими-нибудь прибамбасами, но у меня с ними туго видимо

 
 
 
 
Сообщение26.12.2008, 02:20 
Аватара пользователя
Chewits в сообщении #171418 писал(а):
есть предположение что оно типа обобщенного однородного


Ну да, если $k$ - корень уравнения $3k=k-1$, то есть, $k=-\frac 14$, то, подставляя $y=z|x|^k$, получим $y'=|x|^kz'+k|x|^{k-1}z\mathop{\mathrm{sign}}x$. Подставляя в уравнение и учитывая равенства $x\mathop{\mathrm{sign}}x=|x|$ и $|x|^{k-1}=|x|^{3k}$, получим уравнение $2|x|z'+kz\mathop{\mathrm{sign}}x-z((1-2k)z-2xz')^2=0$. Советую решать его отдельно при $x\geqslant 0$ и при $x\leqslant 0$. Функция $\mathop{\mathrm{sign}}x$ определяется так:
$$\mathop{\mathrm{sign}}x=\begin{cases}-1\text{ при }x<0\text{,}\\ 0\text{ при }x=0\text{,}\\ 1\text{ при }x>0\text{.}\end{cases}$$

P.S. Вы неправильно используете тег [Mаth]. Формулы нужно окружать знаками доллара: $2\frac{dy}{dx}-y\left(y-2x\frac{dy}{dx}\right)^2=0$.

Код:
$2\frac{dy}{dx}-y\left(y-2x\frac{dy}{dx}\right)^2=0$


Посмотреть код формулы можно, наведя на неё курсор мыши. Подробнее о формулах можно почитать в темах "Первые шаги в наборе формул" и "Краткий ФАК по тегу [mаth]."

 
 
 
 
Сообщение26.12.2008, 22:03 
спасибо, сейчас погляжу. подсказали также, что довольно несложно решается методом введения параметра, выразив из уравнения не у, а х

 
 
 
 
Сообщение27.12.2008, 10:45 
Аватара пользователя
Замена $y=z/\sqrt{x}$ при $x\geqslant 0$ и $y=z/\sqrt{-x}$ при $x< 0$ приведёт к разделению переменных.

Добавлено спустя 2 минуты 7 секунд:

Someone писал(а):
Ну да, если $k$ - корень уравнения $3k=k-1$, то есть, $k=-\frac 14$, то, подставляя $y=z|x|^k$, получим $y'=|x|^kz'+k|x|^{k-1}z\mathop{\mathrm{sign}}x$.

Вообще-то решение уравнения $3k=k-1$ есть $-1/2$.

Получается я ту же самую замену предложил ).

 
 
 [ Сообщений: 4 ] 


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group