СООБЩЕНИЕ О ФОРМУЛАХ---вычисления

таких, что

.
Ранее на стр. 7 я уже давал такие формулы. Но очень скоро обнаружил, что те формулы не охватывают все числа. Пришлось заново подработать этот вопрос и получить формулы, которые полностью решают эту задачу. Это утверждение основано на процедуре вывода формул, которую к сожалению я привести не могу ввиду ее громоздкости. Вот эти формулы:

деленное на

деленное на

деленное на
В этих формулах

; числа

могут принимать любые значения: положительные, отрицательные, нулевые, равные, не равные значения. По этим формулам будут вычисляться как целые числа, так и дроби. Но и те и другие удовлетворяют равенству

. Целые числа получим при

, а также если

содержат множитель
Видим, что значения чисел

зависит от трех параметров. Не совсем приятно, но такова реальность, таковы соотношения между не полными суммами-разностями квадратов и полными суммами квадратов. И если кто-нибудь сможет выявить дополнительные закономерности в этих соотношениях и сумеет упростить формулы---было бы прекрасно!
Суммы оснований (чеслители)
Решить могут или не могут быть равны квадрату эти суммы, видимо не возможно. А очень бы этого хотелось!
Приведу выкладки получения тождества:
Сумма этих трех слагаемых

.
Как видим тождество состоялось, что говорит о верности формул. Petern1.