2014 dxdy logo

Научный форум dxdy

Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки




На страницу Пред.  1, 2, 3  След.
 
 
Сообщение20.11.2008, 11:19 
Brukvalub в сообщении #160100 писал(а):
порочной практики анализа - приближенным вычислением с помощью дифференциала.

И опять же не могу согласиться (если я правильно понял реплику). Да, меня тоже раздражают задания типа "вычислить приближённо $\sqrt{4.17}$". Однако: это же реально необходимо, уметь прикидывать подобные вещи в уме! Да и для понимания геометрического смысла теории полезно. Противно только, что это задание трудно аккуратно формализовать.

Добавлено спустя 6 минут 24 секунды:

powerZ в сообщении #160108 писал(а):
потом уже искать аналитическое решение (если такое ещё вообще найдется

Дополнение: такое вообще почти никогда не найдётся. Т.е. множество задач, для которых аналитическое решение найдётся, имеет меру нуль.

 
 
 
 
Сообщение20.11.2008, 13:43 
Аватара пользователя
ewert писал(а):
Вычислительная математика -- наука в значительной степени экспериментальная.
...
Научиться пользоваться некоей формулой -- так к этому в значительной степени и сводится обучение математике. Вот, к примеру, есть формула: $(fg)'=f'g+g'f$. Или $(f(g(x)))'=f'(g)\cdot g'(x)$. Допустим, некий студент эти формулы вызубрил и сдал. Ну так чего же от него ещё и требовать? Так нет же, злодеи-преподаватели до посинения (преимущественно собственного) всё требуют и требуют от него вычисления каких-то дурацких производных...

Согласен со всем сказанным. Другое дело, что данная конкретная задача не очень, как мне кажется, похожа на вычисление производной. Действительно ли надо заставлять студента-прикладника уметь для конкретной функции записать, скажем, разностный лапласиан? Он себе напишет программу, впишет туда формулу разностного лапласиана и будет рад. Хотя то, что я сейчас говорю, звучит очень спорно даже для меня :)

 
 
 
 
Сообщение20.11.2008, 13:55 
Аватара пользователя
Хорхе писал(а):
Действительно ли надо заставлять студента-прикладника уметь для конкретной функции записать, скажем, разностный лапласиан? Он себе напишет программу, впишет туда формулу разностного лапласиана и будет рад.
Чему он будет рад? Откуда у него уверенность, что он правильно аппроксимировал лапласиан и запрограммировал? На задаче, обсуждаемой в этой теме, человека обучают решать диф уравнения численно таким-то методом. Наличие у задачи точного решения помогает отладить программу, на конкретном примере увидеть, скажем, порядок точности метода и т.д.

 
 
 
 
Сообщение20.11.2008, 14:16 
Аватара пользователя
ewert в сообщении #160111 писал(а):
Т.е. множество задач, для которых аналитическое решение найдётся, имеет меру нуль.


Ну, так уж и нуль. Линейные системы имеют аналитическое решение. Правда конечно придется сначала вычислить собственные значения матрицы. Это, наверно, всё равно численно.

 
 
 
 
Сообщение20.11.2008, 17:15 
powerZ писал(а):
ewert в сообщении #160111 писал(а):
Т.е. множество задач, для которых аналитическое решение найдётся, имеет меру нуль.
Ну, так уж и нуль. Линейные системы имеют аналитическое решение. Правда конечно придется сначала вычислить собственные значения матрицы. Это, наверно, всё равно численно.

Во-первых, решение линейных систем практически не аналитично. Во-вторых, поиск с.ч. (хоть и не имеет отношения к решению систем) и впрямь в аналитическом виде не возможен. В-третьих, сами по себе линийные системы по отношению ко всем мыслимым задачам имеют меру типа суперноль.

 
 
 
 
Сообщение21.11.2008, 02:33 
Аватара пользователя
ewert в сообщении #160239 писал(а):
Во-первых, решение линейных систем практически не аналитично.


Сильно спорить не буду, поскольку не совсем понял, какой смысл вы вкладываете в эту фразу. Скажу только, что аналитическое решение может быть записано для системы линейных уравнений. Например через матричый экспоненциал.

ewert в сообщении #160239 писал(а):
В-третьих, сами по себе линийные системы по отношению ко всем мыслимым задачам имеют меру типа суперноль.


Ошибаетесь. Хотя бы потому, что иногда возникает задача упростить модель и свести её к линейной, хотя бы на малом сигнале. Например в электротехнике.

 
 
 
 
Сообщение21.11.2008, 06:29 
powerZ писал(а):
Скажу только, что аналитическое решение может быть записано для системы линейных уравнений. Например через матричый экспоненциал.


Не все линейные системы имеют постоянные коэффициенты. Найти аналитическое решение системы с переменными коэффициентами обычно нельзя.

 
 
 
 
Сообщение21.11.2008, 06:54 
powerZ в сообщении #160381 писал(а):
Скажу только, что аналитическое решение может быть записано для системы линейных уравнений. Например через матричый экспоненциал.

теорекхтицски -- да. А пракхтицски, если эн ну хотя бы больше шести, например?

 
 
 
 
Сообщение21.11.2008, 08:51 
Аватара пользователя
ewert в сообщении #160389 писал(а):
А пракхтицски, если эн ну хотя бы больше шести, например?


Ну а чего там сложного.
$X(t)'=AX(t)+b$

Если нулевых и кратных корней нет, то совсем просто:

$X(t)=M(t)(X(0)+A^{-1}b)-A^{-1}b$,
где $M(t)$ - матричный экспоненциал. Для 7-го порядка (например) запишется в виде:

$M(t)=a(t)_0E+a(t)_1A+a(t)_2A^2+a(t)_3A^3+a(t)_4A^4+a(t)_5A^5+a(t)_6A^6$


$\mathbf{a(t)} = {\left( \begin{array}{cccccc} 1 & p1 & p1^2 & p1^3 & \dots & p1^6 \\ 1 & p2 & p2^2 & p2^3 & \dots & p2^6 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & p7 & p7^2 & p7^3 & \dots & p7^6 & \end{array} \right)}^{-1}{\left( \begin{array}{c} e^{p1t} \\ e^{p2t}  \\ \vdots \\ e^{p7t} \end{array} \right)}$

где $p1-p7$ - собственные значения матрицы $A$

Добавлено спустя 1 минуту 34 секунды:

Конечно если есть нулевые, а тем более кратные корни, то все сложнее. Придется приводить уравнения к канонической форме.

 
 
 
 
Сообщение21.11.2008, 08:54 
powerZ, а как Вы будете собственные значения находить для произвольной системы?

 
 
 
 
Сообщение21.11.2008, 08:58 
Аватара пользователя
V.V. в сообщении #160411 писал(а):
powerZ, а как Вы будете собственные значения находить для произвольной системы?


Ну это само собой численно, писал об этом выше.

 
 
 
 
Сообщение21.11.2008, 08:58 
чего-то удивительно, где у Вас экспоненты да и вообще зависимость от $t$, а ведь деваться им некуда.

Ну да не в этом дело. Раз уж Вы говорите о системе линейных именно дифференциальных уравнений (а не алгебраических), то от поиска собственных чисел никуда не денешься. А они "аналитически" (в смысле явно) через матрицу не выражаются. Начиная с пятимерного случая -- формально, а практически -- уже с трёхмерного.

 
 
 
 
Сообщение21.11.2008, 09:01 
Аватара пользователя
Но все равно, это не то чтобы по Эйлеру решать. ИМХО это можно назвать аналитическим решением.

Добавлено спустя 1 минуту 55 секунд:

ewert в сообщении #160415 писал(а):
чего-то удивительно, где у Вас экспоненты да и вообще зависимость от , а ведь деваться им некуда.


Сори, недописал. Уже поправился.

ewert в сообщении #160415 писал(а):
Ну да не в этом дело. Раз уж Вы говорите о системе линейных именно дифференциальных уравнений (а не алгебраических), то от поиска собственных чисел никуда не денешься. А они "аналитически" (в смысле явно) через матрицу не выражаются. Начиная с пятимерного случая -- формально, а практически -- уже с трёхмерного.


Ну в этом смысле, согласен.

 
 
 
 
Сообщение30.11.2008, 16:39 
Здравствуйте! Объясните, пожалуйста, как методом Эйлера решить (построить график) такое ДУ:

y''+3y'+2y=1/(e^x(e^x+2));

y(0)=0; y'(0)=0;

В книгах/методичках не смог найти описание метода для ДУ 2го порядка.
Шаг, скажем, 0.1, интервал по x от 0 до2.
Заранее спасибо!

 
 
 
 
Сообщение30.11.2008, 16:41 
перепишите в виде векторного уравнения первого порядка (т.е. системы двух скалярных уравнений), введя обозначение $\vec z(x)\equiv(y(x);\,y'(x))$.

 
 
 [ Сообщений: 32 ]  На страницу Пред.  1, 2, 3  След.


Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group