hurtДа, Вы всё верно говорите.
Но поскольку я успел написать длинное продолжение пояснений, прежде чем увидел сейчас Ваш текст, то всё-таки с Вашего позволения помещаю свои пояснения ниже (ну, жалко ведь их выбрасывать :)
"Хиральность" или, что то же самое,
спиральность нейтрино можно понимать просто-напросто как термин, описывающий знак проекции спина на направление импульса. Если спин

и импульс

направлены в одну и ту же сторону, то упомянутая проекция положительная, и спиральность считается равной

Если же спин

и импульс

направлены в противоположные стороны, то указанная проекция получается отрицательной, и спиральность считается равной

Математически знак проекции этих векторов друг на друга определяется знаком их скалярного произведения

У меня на рисунках показаны и сами векторы

и знаки их скалярных произведений - эти неравенства фактически указывают спиральность. А именно: на рисунках у нейтрино с

спиральность равна

а в случае с

спиральность равна
Поскольку векторы

и

на рисунках изображены, и глазами прямо видно, как они направлены, то мы можем даже вообще не упоминать этот сильно научный термин "спиральность", а прямо так картинками всё и пояснять.
Так вот. Когда-то давным-давно физики думали, что все взаимодействия элементарных частиц характеризуются "P-симметрией", т.е. все они "зеркально-симметричны". Эти слова для нашего примера означают вот что: если с какой-то не равной нулю вероятностью в реакциях рождается нейтрино

c противоположно направленными

и

то с такой же вероятностью должно рождаться и нейтрино с одинаково направленными

и

Потому что эти две картинки переходят друг в друга при зеркальном отражении; другими словами: они переходят друг в друга под действием P-преобразования, что и показано у нас на рисунках.
Но природа распорядилась по-своему. Оказалось, что в природе запрещено существовать таким нейтрино, у которых

и

направлены одинаково. Этот удивительный экспериментальный факт физики назвали "нарушением P-симметрии".
Но это ещё не всё. Оказалось, что природа разрешает существовать частицам, похожим на нейтрино с одинаково направленными

и

но только такие частицы ведут себя в реакциях не как нейтрино, а как антинейтрино. Т.е. надо считать, что у них есть так называемый лептонный заряд (другое его название - лептонное число)

и он имеет противоположный знак по сравнению с лептонным зарядом

тех нейтрино, у которых

и

направлены противоположно друг друг другу. Если так считать, и полагать, что лептонный заряд в реакциях сохраняется, то получалось очень хорошее согласие с наблюдениями многих других реакций. В том числе, получалось согласие с наблюдением
отсутствия ряда реакций, которые раньше казались теоретически возможными; просто они оказались запрещёнными законом сохранения лептонного заряда.
Таким образом, физикам пришлось принять как экспериментальный факт, что существуют нейтрино

с

c противоположно направленными

и

(спиральность

и существуют антинейтрино

с

c одинаково направленными

и

(спиральность

И поменять в этом описании направления

и

нельзя, иначе получится описание несуществующих частиц.
Теперь введём в дело операцию С (так называемое зарядовое сопряжение) следующим простейшим способом: положим, что эта операция никак не влияет на

и

а только изменяет на противоположные знаки всех зарядов - и электрических и лептонных.
Ниже на рисунке в правой части показан результат применения С к частицам в описании той самой несуществующей реакции (оно показано в левой части рисунка), которая получилась из первоначальной реакции операцией Р.
Таким образом, применение последовательности операций Р и С к описанию существующей исходной реакции

привело нас к описанию реакции

Оказывается, такая реакция существует и притом реализуется в опытах с такой же вероятностью, что и исходная реакция.
Такого рода примеры позволили физикам тогда сказать, что взаимодействия частиц характеризуются "CP-симметрией".
Преобразование Т мы можем ввести в рассмотрение просто как перемену местами начальных и конечных частиц в реакциях. Если вдаваться в подробности, то Т ещё и меняет направления

и

на противоположные - все движения, и вращательное и поступательное, после Т происходят в обратных направлениях; спиральность при этом не меняется.
Тем самым получается описание обратных реакций. Например, применив Т к последней нашей картинке, получим вместо описания распада

описание реакции образования одной частицы из двух:

Такие реакции, обратные к исходным, не запрещены, и, значит, "СРТ-симметрия" не нарушена. (Хотя осуществить обратные реакции в опытах может быть трудно - надо "прицеливаться" одной частицей в другую, чтобы они вступили в реакцию друг с другом).
Дальше не знаю что: можно либо другие подобные примеры разбирать, либо пытаться разобрать хотя бы частично намного более тяжёлый сюжет - о нарушении CP-симметрии; и совсем малоподъёмное дело - разбирать, как вся эта эмпирика учитывается в математическом формализме моделей КТП. Вы решайте, есть ли у Вас ещё вопросы для форума, и какие, или дальше будете по книгам и статьям разбираться.